Источники света: виды, основные характеристики и области применения

Оглавление

Параметры приборов освещения.

Первой характеристикой светильников

являются кривые силы света. Распределение светового потока определяет его назначение. А оценивается распределение светового потока в пространстве при помощи кривой силы света. Изображается кривая сила света в виде графика I (a,b). А и в — углы распространения потока света в продольной и поперечной плоскостях. Чем крупнее овал от потока света, тем уже кривая сила света и тем выше освещённость в центре светового пятна. Это важный показатель светового прибора.

По типовым кривым силы света выделяют 7 видов ОП: концентрированная (К), глубокая (Г), косинусная (Д), полуширокая (Л), широкая (Ш), равномерная (М), синусная (С). Типовые кривые силы света (в кд) светильника рассчитаны на значение силы света при световом потоке лампы Fcв = 1000 лм. Основным признаком, определяющим тип кривой, является отношение максимальной силы света светильника

к средней арифметической для данной плоскости.

Второй светотехнической характеристикой является соотношение потоков, излучаемых в нижнюю и верхнюю полусферы. В зависимости от этого, световые приборы делятся на классы, в зависимости от того, какую долю всего потока светильника составляет световой поток нижней полусферы. Поток в пространстве может распределяться преимущественно вниз (светильники прямого света

), преимущественно вверх (светильники отраженного света ), равномерно во все стороны (светильники рассеянного света ).

Осветительные приборы рассеянного света подходят лучше для общего освещения помещения , так как они дают равномерное распределение яркости Достаточное насыщение светом обеспечивает зрительный комфорт.

Осветительные приборы отраженного света обеспечивают комфортное и равномерное освещение, так как полностью соответствуют нормам ограничения слепящего эффекта и дискомфорт. Они насыщают светом пространство, хорошо сочетая с верхним или боковым дневным светом.

Осветительные приборы прямого света применяются для помещения с невысокими потолками. Это приборы потолочные или встроенные в потолок. Они экономичны, подсвечивают нужное место, используются для подсветки картин, предметов, скульптур.

Осветительные приборы делятся на 5 классов, в зависимости от размера светового потока, падающего на нижнюю полусферу: прямого света (доля 80% — П), преимущественно прямого (60-80%-Н), рассеянного (40-60%-Р), преимущественно отражённого (20-405-В), отражённого (менее 20%-О). Эти параметры можно найти в сопроводительных документах на ОП.

Важной светотехнической характеристикой

ОП является коэффициент полезного действия. По своему основному назначению осветительные приборы делятся на группы. Для освещения помещений производственного назначения, административных, офисных и других помещений общественного назначения, сельскохозяйственных помещений, спортивных сооружений; для функционального и декоративного наружного освещения; для внутреннего освещения средств транспорта и для архитектурно-художественного освещения зданий, сооружений, памятников, фонтанов и т.д., а так же для аварийного освещения.

Классификация эта условна, так как одинаковый светильник может использоваться в разных ситуациях.

Оп отличаются по конструктивному применению и способу установки. Согласно ГОСТ17677 имеются встраиваемые (В) , потолочные (П) , подвесные (С) , настенные (Б) , напольные (Н), венчающие (Т), консольные (К), переносные (Р). Конструктивная особенность светильника задаёт ему положение в пространстве для получения наилучшего эффекта.

Светильники любого назначения

— это искусственное освещение. Сегодня огромная роль отводится искусственному освещению. С этим освещением человек проводит большую часть своей жизни. Осветительными приборами человек пользуется и в дневное время. Сегодня искусственный свет перестал быть просто освещением. Он стал еще и светодизайном в общем интерьере. По ночам города сверкают от различных типов осветительных приборов

Поэтому очень важно знать особенности ихарактеристики приборов освещения , чтобы не навредить здоровью человека и разумно экономить электрическую энергию

Применение искусственных источников видимого излучения

Каждый искусственный источник электромагнитного излучения определенного типа используется человеком в той или иной сфере деятельности. Области применения источников света следующие:

  • Лампы накаливания продолжают оставаться основными источниками освещения помещений благодаря их низкой цене и хорошему индексу цветопередачи. Однако эти лампы постепенно вытесняются галогеновыми.
  • Галогеновые лампы задумывались как электроприборы, которые должны были повысить эффективность ламп накаливания, заменив их. В настоящее время они нашли свое применение в автомобилях.
  • Флуоресцентные источники света применяются главным образом для освещения офисов и других служебных помещений благодаря своему разнообразию форм и излучению рассеянного и равномерного света. Эффективность излучения такого типа ламп повышается с увеличением их длины и диаметра.

Виды искусственного освещения

Существует несколько типов приборов. Они отличаются коэффициентом полезного действия и другими характеристиками.

Неоновые лампы

Эти излучатели относятся к типу газоразрядных. Колба изделия заполнена смесью неона и гелия. При подключении находящихся внутри электродов к источнику напряжения в газовой среде возникает стабильный разряд, способный существовать неограниченное время. Он сопровождается оптическим излучением оранжево-красного цвета.

Светильники работают на переменном и постоянном токе. Для снижения напряжения зажигания в газ вводят специальные добавки, катод покрывают активирующим материалом.

Существует несколько разновидностей таких источников. Наиболее экономичны дуговые безртутные люминесцентные неоновые лампы. На каждый Вт потребляемой энергии они выдают поток в 25 лм.

Точечные светильники

Компактные приборы, которые выпускаются в следующих исполнениях:

  • встраиваемом;
  • накладном.

Первые устанавливаются скрыто, в нише или за обшивкой подвесного потолка. Вторые располагаются на виду.

Функционально точечные светильники делятся на 2 вида:

  • стационарные;
  • поворотные.

Вторые позволяют направить свет в нужную сторону.

В приборах используются лампы:

  1. Накаливания.
  2. Галогенные.
  3. Люминесцентные.
  4. Светодиодные.

В лампах накаливания ток пропускается через вольфрамовую нить, из-за чего она нагревается до яркого свечения. Из колбы откачан воздух, поэтому горения не происходит.

Изделие привлекает низкой стоимостью, но имеет ряд недостатков:

  • низкий удельный световой поток (5-15 лм/Вт);
  • сильный нагрев;
  • короткий срок службы — 1000 часов.

Галогенные представляют собой усовершенствованный вариант. Колба у них заполнена буферным газом. Это позволяет поднять светоотдачу до 15-25 лм/Вт и одновременно увеличить ресурс до 2-4 тыс. часов.

Люминесцентные лампы в обиходе называют «экономками». Их световой поток составляет 25-50 лм/Вт, ресурс — 2-20 тыс. часов.

Они почти не греются, но имеют ряд недостатков:

  • стоят дороже ламп накаливания;
  • мерцают, что вызывает утомление глаз;
  • нуждаются в пускорегулирующей аппаратуре.

Светодиодные (LED) лампы постепенно вытесняют все остальные благодаря существенным преимуществам:

  • большому ресурсу — 50 тыс. часов;
  • высокому световому потоку — 80-120 лм/Вт;
  • устойчивости к ударам и вибрации;
  • низкому тепловыделению;
  • отсутствию чувствительности к частым включениям.

Недостатком LED-ламп является высокая стоимость.

Светодиодный дюралайт

Источник представляет собой длинную прозрачную ПВХ-трубку с LED-элементами внутри. Он предназначен для использования вне помещений: на фасадах домов, деревьях и т. д. Модели с разноцветными диодами применяются в декоративных целях: при подключении к контроллеру они мигают и меняют оттенки.

Светодиодные ленты

Изделие представляет собой узкую полосу полимера с закрепленными на ней LED-диодами и проводниками. На обратной стороне имеется клеевой слой, закрытый пленкой. Он позволяет зафиксировать ленту на любой гладкой поверхности без применения инструментов.

Гибкий неон

Светильник устроен подобно дюралайту. Отличие состоит в силиконовой заливке, не позволяющей разглядеть отдельные LED-диоды. Благодаря этому исходящее от трубки оптическое излучение является рассеянным, отчего она напоминает неоновую лампу.

Галогенные лампы

Это усовершенствованные лампы накаливания. Достоинством галогенных ламп является неизменно яркий свет, прекрасная передача цвета и возможность создания разнообразных световых оттенков. Благодаря добавлению в колбу газов фтора, брома, хлора, йода, уменьшающих количество испарения вольфрама, срок службы лампы увеличился до 2000-5000 часов. Использование специальных фильтров, нанесенных на кварцевое стекло, «останавливает» ультрафиолет, что оберегает освещаемые вещи от выгорания. Дихроичные отражатели отводят тепловое излучение за пределы освещаемой площади. Яркость освещения регулируется с помощью большого ассортимента диаметров отражателей.

Линейные галогенные лампы с нитью накала в форме спирали и прозрачной кварцевой трубкой. Эти двухцокольные лампы используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Для ламп мощностью до 500 Вт позиция свечения произвольная, мощностью свыше 500 Вт — только горизонтальная, с допустимым отклонением в 4°. Лампы совмещают в себе высокую светоотдачу, «живой» белый блеск, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Галогенные лампы со стеклянным отражателем и цветным защитным стеклом. Цветное стекло добавляет световому пучку определенный оттенок. Предназначены для декоративного освещения.

Галогенные лампы с параболическим стеклянным отражателем, покрытым металлическим алюминиевым слоем. Предназначены для создания световых акцентов. Слегка рифленая поверхность переднего стекла хорошо подчеркивает эффект «искрящегося» света и защищает горелку от загрязнения и пыли, а также от соприкосновения с руками человека. Применяется в акцентном освещении, в освещении общественных и жилых помещений, уличной подсветке (при использовании на улице лампа должна быть защищена от попадания влаги).

Галогенные лампы с двойной колбой работают от сетевого напряжения, имеют резьбовой цокол. Лампы характеризуются стабильной светоотдачей и отличной цветопередачей (Ra=100). Лампы могут работать с регулятором яркости. Применяются для освещения жилых и общественных помещений.

Лампы накаливания со временем теряют яркость. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов. Галогенные лампы имеют яркий насыщенный и ровный свет, спектральный состав которого значительно отличается от спектрального состава света обычной лампы накаливания и приближен к спектру солнечного света. Благодаря этому прекрасно передаются цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека. * Исследования проведены автором.

Преимущества галогенных ламп:

  • высокая светоотдача;
  • стабильно яркий свет на протяжении срока службы;
  • долгий срок службы;
  • миниатюрная конструкция;
  • возможность регулирования светового потока;
  • высокий уровень безопасности, особенно в условиях повышенной влажности (низковольтные лампы).

Недостатки галогенных ламп:

  • до стеклянной поверхности лампы лучше не дотрагиваться голыми руками, так как на ней остаются жирные пятна, что может привести к оплавлению в этом месте стекла колбы. Лампу необходимо брать, используя кусок чистой ткани, а если колба чем-то испачкана, то нужно протереть ее медицинским спиртом;
  • галогенные лампы очень чувствительны к скачкам напряжения сети, поэтому их следует включать через стабилизатор напряжения, а низковольтные — через трансформатор;
  • температура колбы может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком).

Влияние света

Самым лучшим типом подсветки жилых помещений на сегодняшний день считается естественное освещение. Поэтому для жилого комплекса характерны большие оконные проемы, которые в должной мере обеспечивают подсветку внутренних помещений днем.
Но естественное освещение возможно только в светлое время суток. Кроме этого не всегда планировка помещений позволяет даже днем освещаться солнечным светом на необходимом уровне. Поэтому для любого жилого помещения всегда используется искусственная подсветка, которая является отличной альтернативой естественной освещенности.

Очень важно, чтобы искусственное освещение внутреннего пространства помещений было максимально приближено по своим техническим параметрам с естественной подсветке. В противном случае при длительном нахождении в комнате с неправильно оформленным светом люди начнут испытывать дискомфорт и такие негативные влияния:

  • появляется головная боль, вплоть до мигреней;
  • увеличивается раздраженность;
  • снижается работоспособность;
  • могут развиться кожные заболевания;
  • начинает снижаться острота зрения. При этом глаза станут быстрее уставать, слезиться и краснеть;
  • могут появиться проблемы со сном;
  • в редких случаях наблюдается снижение аппетита;
  • повышается риск обострения хронических заболеваний, а также болезней дыхательных путей из-за общего снижения иммунитета.

Как видим, неправильно подобранное освещение для комнаты, где не были соблюдены нормы, приведенные в СНиП (специальная документация – строительные нормы и правила), крайне негативным образом скажется на самочувствии. Стоит отметить, что наиболее яркими и рано проявившимися последствиями нарушениями в функционировании организма будут заметны на детях. В случае с детьми патологические нарушения могут приобрести даже необратимый характер.
Поэтому можно сделать вывод, что свет в нашей жизни, особенно искусственный, играет очень большую роль и прямо сказывается на нашем здоровье. Причем, как на физическом, так и психическом.

Физика источников света

Спектр излучения, который видит глаз человека, лежит в приделах длин волн фотонов от 400 нм до 700 нм. Источником света является физический процесс, который происходит в атоме вещества. Атом в результате какого-либо действия может получить энергию извне, часть этой энергии он передает своей электронной подсистеме.

Энергетические уровни электрона в атоме являются дискретными, то есть каждому из этих уровней соответствует конкретная величина. Благодаря полученной извне энергии некоторые электроны атома могут перейти на энергетические уровни более высокого порядка, в этом случае можно говорить о возбужденном электронном состоянии. В этом состоянии электроны оказываются неустойчивыми и снова переходят на уровни с меньшей энергией. Этот процесс сопровождается излучением фотонов, которое и является светом, который мы воспринимаем.

Люминесцентные лампы в виде кольца

Благодаря своей форме применяются в широком диапазоне осветительных приборов. Из-за малых габаритов трубки эту лампу можно использовать в максимально плоских светильниках. Она применяется для освещения общественных и жилых помещений.

Преимущества люминесцентных ламп:

  • по сравнению с лампами накаливания обеспечивает такой же световой поток, но потребляют в 4-5 раз меньше энергии;
  • имеют низкую температуру колбы;
  • повышенный срок службы;

Недостатки люминесцентных ламп:

  • снижает световой поток при повышенных температурах;
  • содержание ртути (хотя и в очень малых количествах, 40-60 мг). Эта доза безвредна, однако постоянная подверженность пагубному воздействию может нанести вред здоровью;
  • люминесцентные лампы не приспособлены к работе при температуре воздуха ниже 15-20 °С.

Прямое и непрямое излучение

Прямыми источниками света являются приборы, природные тела и организмы, которые могут самостоятельно испускать электромагнитные волны в видимом спектре. К прямым источникам относятся звезды, температура которых достигает десятков и сотен тысяч градусов, огонь, лампа накаливания, а также современные приборы, например, плазменный телевизор или жидкокристаллический монитор компьютера, который производит излучение, индуцированное микро электрическим разрядом.

Другим примером прямых естественных источников света являются животные, которые обладают биолюминесценцией. Излучение в этом случае возникает как результат химических процессов, происходящих в организме существ. К ним относятся светлячки и некоторые жители морских глубин.

Непрямые источники света представляют собой тела, которые не излучают самостоятельно свет, но способны его отражать. При этом отражающая способность каждого тела зависит от его химического состава и физического состояния. Непрямые источники святятся только благодаря тому, что находятся под влиянием электромагнитного излучения прямых источников. Если непрямой источник не аккумулирует световую энергию, то при прекращении воздействия света на него он перестает быть видимым.

Основные характеристики приборов

Основными характеристиками источников света являются следующие:

Световой поток. Физическая величина, которая характеризует количество света, испускаемого источником за одну секунду во всех направлениях. Единицей измерения светового потока является люмен. Интенсивность излучения. В некоторых случаях возникает необходимость в знании распределения светового потока вокруг его источника. Именно это распределение и описывает данная характеристика, которая измеряется в канделах. Освещенность. Измеряется в люксах и представляет собой отношение светового потока к освещаемой им площади. Эта характеристика важна для комфортного выполнения определенных видов работ. Например, по международным нормам освещенность на кухне должна быть около 200 люкс, а для учебы уже необходимы 500 люкс. Эффективность излучения

Является важной характеристикой любой электрической лампы, поскольку она описывает отношение светового потока, создаваемого данным прибором, к потребляемой им мощности. Чем больше это отношение, тем более экономичной считается лампа

Индекс цветопередачи. Указывает на то, насколько точно лампа воспроизводит цвета. Для ламп хорошего качества этот индекс лежит в области 100.
Цветовая температура. Представляет собой меру «белизны» света. Так, свет с преобладающими красно-желтыми цветами считается теплым и имеет цветовую температуру меньше 3000 К, холодный свет имеет синие цвета и характеризуется цветовой температурой выше 6000 К.

Разделение освещения по назначению

Лампы применяются с разными целями. Каждый вид освещения имеет свои особенности.

Уличное

Обеспечивает безопасное и комфортное перемещение по населенному пункту. Используются фонари с классом пыле- и влагозащиты не ниже IP65.

Производственные помещения и объекты

Различают следующие виды освещения:

  1. Рабочее.
  2. Аварийное.
  3. Дежурное.
  4. Охранное.

Первый тип обеспечивает протекание производственного процесса. К этой категории относят лампы в цехах и других помещениях, в коридорах и на транспортных путях предприятия.

Аварийное освещение запитывается от резервных источников тока и зажигается при нештатном отключении основного.

Делится на 3 подвида:

  1. Безопасности. Предотвращает остановку производственного процесса и аварии. Должно обеспечить освещенность не менее 5% от нормальной.
  2. Эвакуационное. Освещает пути, по которым персонал экстренно покидает помещение. Минимальная освещенность в здании составляет 0,5 лк, на улице — 0,2 лк.
  3. Сигнальное. Указывает на особые зоны. Применяется при пожарах, утечке газа и т. д.

Дежурные лампы включаются в нерабочее время.

Охранные горят по периметру объекта, помогают защитить его от несанкционированного проникновения.

Частные и многоквартирные дома

В жилом объекте управляющая компания обязана обеспечить освещение:

  • придомовой территории: дороги, парковки, детской площадки, мусорных контейнеров;
  • входов в подъезд;
  • лестничных клеток;
  • лифтов.

Снаружи используются светильники с антивандальными приспособлениями.

Вокруг частного дома устанавливают декоративные фонари. Подсвечивают само строение, ворота, дорожки, беседки и другие объекты на территории.

Сколько нужно светить, чтобы правильно жить

Недостаток света не только портит зрение, но и провоцирует усталость. Незнание элементарных азов по части освещённости создаёт нам неудобства. То, что наше зрение адаптируется и не особо ощущает разницу в лк, доходящую порой до тысячи единиц, часто приводит к ощущению дискомфорта, вызванного непонятно чем.

Чисто вымытая комната воспринимается как мрачная и грязная, если использовать ЛН в 25 ватт. И в то же время, применяя в грязном помещении очень яркую ЛЛ, мы добьёмся противоположного эффекта.

Часто в домах встречаются двух- и трёхрожковые люстры по 60–75 ватт на каждую лампочку. Между тем, потребность человеческого глаза примерно в 4 раза выше. Многие из нас даже не подозревают, что живут при недостаточном освещении, причиняя тем самым вред своему здоровью.

Существуют официальные нормы освещения, указанные в лк для различных помещений. Но следовать им буквально, во-первых, технически сложно, во-вторых, не обязательно — по нескольким причинам:

  • разница в 100–200 лк не воспринимается на глаз;
  • параметры рассчитаны на среднестатистическое зрение без учёта индивидуальности;
  • нормы указаны минимальные по причине необходимости экономии электроэнергии.

Следовательно, нормы должны служить лишь ориентиром, а подбирать ИО стоит под свои личные нужды, подразделяя потребности и учитывая нюансы — методом проб и ошибок. Главное правило — со светом переборщить невозможно. Это особенно актуально для людей, занимающихся точной работой, которая требует постоянного напряжения глаз (ювелиры, швеи, часовщики). Даже покупая, на ваш взгляд, слишком яркий светильник, вы не достигнете уровня излучения, эквивалентного по мощности солнечному.

Спектры испускания

При поглощении фотонов электроны переходят в возбужденное состояние. Когда они возвращаются в основное состояние, возникают новые фотоны, имеющие ту же длину волны и, следовательно, тот же цвет, что и поглощенные, однако излучаются они в произвольных направлениях. Лишь очень немногие кванты, соответствующие этому цвету, попадают на проекционную поверхность, поэтому и возникают темные полосы.

Но если теперь собрать свет, излучаемый во все стороны, и пропустить его через призму, возникнет линейчатый спектр, полностью дополнительный к темным полосам. Поскольку этот свет излучается, иными словами, испускается атомами водорода, такой линейчатый спектр называют также спектром испускания.

[править] Восприятие света глазом

Из человеческих органов чувств больше информации об окружающей среде дает нам зрение. Однако видеть окружающий мир люди могут только потому, что существует свет.

Человек видит электромагнитные волны в том видимом диапазоне, который соответствует рецепторам, поглощающим свет соответствующих частот, вызывая при этом соответствующие импульсы в нервной системе. Сетчатка человеческого глаза имеет два типа светочувствительных клеток: палочки и колбочки. Палочки не имеют особой чувствительности к определенному диапазону спектра, зато более чувствительны к свету вообще, поэтому позволяют видеть черно-белое изображение. Колбочки имеют в своем составе молекулы, которые чувствительны к различным диапазонам видимого спектра, поэтому позволяют видеть в цвете.

Параметры приборов освещения

Есть несколько параметров, которые влияют на выбор оборудования. Чтобы найти оптимальное решение, надо учитывать их:

  1. Энергоэффективность. Чаще всего этот показатель обозначается КПД, можно сравнить разные типы оборудования, чтобы выбрать самый экономичный.
  2. Освещенность показывает силу светового потока, которая приходится на квадратный метр. Этот показатель больше всего влияет на выбор светильника, так как от него напрямую зависит создание комфортных условий в жилом помещении или на рабочем месте. Измеряется в люксах.
  3. Цветовая температура. Может меняться в широких пределах, для простоты диапазон разделен на 3 сегмента – теплый, нейтральный и холодный свет. Конкретный вариант подбирается в зависимости от характера использования оборудования и места его установки.

    Цветовая температура – важный параметр осветительного оборудования.

  4. Индекс цветопередачи обозначается Ra и показывает, насколько точно передаются цвета в сравнении с естественным освещением. Может составлять от 0 до 100, чем показатель больше, тем естественнее воспринимаются оттенки.
  5. Коэффициент пульсации показывает изменение яркости источника света. Нередко пульсацию невозможно увидеть, но из-за нее глаза устают намного быстрее. Поэтому нормами ГОСТ указаны предельные значения для разных видов осветительного оборудования.
  6. Ослепленность. Показывает, насколько светильник оказывает ослепляющее действие на человеческое зрение. Используется для моделей с направленным светом, показатели строго нормированы, чтобы не создавать опасности для людей.

У каждого типа оборудования есть дополнительные параметры, которые имеют значение в определенных условиях.

Искусственные приборы видимого электромагнитного излучения

В свою очередь, искусственные источники бывают следующих типов:

  • Лампы накаливания. Они излучают свет благодаря разогреву металлической нити накаливания до температуры нескольких тысяч градусов. Сама нить накаливания находится в герметичном стеклянном сосуде, который заполнен инертным газом, предотвращающим процесс окисления нити.
  • Галогеновые лампы. Представляют собой новую эволюционную ступень ламп накаливания, в которых к инертному газу, в котором находится металлическая нить накаливания, добавляется галогеновый газ, например, йод или бром. Этот газ вступает в химическое равновесие с металлом нити, которым является вольфрам, и позволяет продлить срок службы лампы. Вместо стеклянного корпуса в галогеновых лампах используют кварц, который выдерживает более высокие температуры, чем стекло.
  • Газоразрядные лампы. Этот вид источников света создает видимое электромагнитное излучение за счет электрических разрядов, которые возникают в смеси газов и паров металла.
  • Флуоресцентные лампы. Эти электрические источники света создают излучение за счет флуоресцентного покрытия внутренней стороны корпуса лампы, которое возбуждается за счет ультрафиолетового излучения электрического разряда.
  • Источники LED (от англ. Light Emitting Diode). Этот вид источников света представляет собой диодные источники электромагнитного излучения. Они отличаются простотой устройства и долгим сроком действия. Также их преимуществами перед другими электрическими источниками света является низкая потребляемая мощность и практически полное отсутствие теплового излучения.

Рабочее, дежурное и аварийное освещение

Если рассматривать классификацию искусственных источников с точки зрения функционального назначения, то можно выделить следующие группы:

  • Рабочее;
  • Дежурное;
  • Аварийное.

Теперь немного подробнее о каждом виде. Рабочее освещение есть везде, где это необходимо для поддержания работоспособности людей или для освещения пути для идущего транспорта. Второй класс освещения начинает функционировать после рабочего времени. Последняя группа нужна для поддержания работы производства в случае отключения основного (рабочего) источника света, оно минимально, но способно временно заменить рабочее освещение.

Устройство осветительного прибора

Независимо от типа и целей использования конструкция всегда состоит из нескольких основных частей:

  1. Источник света. Это может быть как сменная лампа, так и встроенные светодиоды. Мощность напрямую зависит от этого элемента. Зачастую можно заменить лампочку на более мощную или наоборот, что позволяет обеспечить нужное качество света.
  2. Осветительная арматура. В нее входят корпус, рассеиватель или отражатель и патрон, в котором установлен источник света. Конструктивное исполнение разное, все зависит от типа оборудования и требований, которые к нему предъявляются. При этом конструкция должна соответствовать нормам безопасности, они прописаны в ГОСТ и ТУ.
  3. Пускорегулирующее оборудование. Обеспечивает оптимальные условия работы и препятствует перегоранию лампы при ее запуске. Есть не во всех светильниках, так как для некоторых источников света наличие пускорегулирующего блока не нужно.
  4. Устройства защиты и управления. Тут может быть много вариантов, так как сейчас системы освещения нередко входят в комплекс «Умный дом» и т.п.
  5. Проводка. Через нее подается напряжение, подбирается по характеристикам источника света и месту установки конструкции. Иногда оборудование может работать от аккумулятора (аварийное освещение) или от солнечной батареи.

Составные части у разных видов светильников одинаковы.

Применение искусственных источников видимого излучения

Каждый искусственный источник электромагнитного излучения определенного типа используется человеком в той или иной сфере деятельности. Области применения источников света следующие:

  • Лампы накаливания продолжают оставаться основными источниками освещения помещений благодаря их низкой цене и хорошему индексу цветопередачи. Однако эти лампы постепенно вытесняются галогеновыми.
  • Галогеновые лампы задумывались как электроприборы, которые должны были повысить эффективность ламп накаливания, заменив их. В настоящее время они нашли свое применение в автомобилях.
  • Флуоресцентные источники света применяются главным образом для освещения офисов и других служебных помещений благодаря своему разнообразию форм и излучению рассеянного и равномерного света. Эффективность излучения такого типа ламп повышается с увеличением их длины и диаметра.

Физика источников света

Спектр излучения, который видит глаз человека, лежит в приделах длин волн фотонов от 400 нм до 700 нм. Источником света является физический процесс, который происходит в атоме вещества. Атом в результате какого-либо действия может получить энергию извне, часть этой энергии он передает своей электронной подсистеме.

Энергетические уровни электрона в атоме являются дискретными, то есть каждому из этих уровней соответствует конкретная величина. Благодаря полученной извне энергии некоторые электроны атома могут перейти на энергетические уровни более высокого порядка, в этом случае можно говорить о возбужденном электронном состоянии. В этом состоянии электроны оказываются неустойчивыми и снова переходят на уровни с меньшей энергией. Этот процесс сопровождается излучением фотонов, которое и является светом, который мы воспринимаем.

Светодиодные лампы

Светодиоды — полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

Основные параметры и единицы измерения источников света

Световое излучение характеризуется многими параметрами:

  • Яркость (L). Измеряется в кд/м2 – кандела на квадратный метр. Это основной фактор светоощущения.
  • Освещенность (E). Измеряется в лк – люкс. 1лк равнозначен потоку излучения в 1 люмен, равномерно распределенному по площади 1м2.
  • Световой поток (Ф). Измеряется в лм – люмен. Характеризует мощность излучения, оценивается по световому ощущению глазом человека. В системе единиц СИ обозначается именно буквой Ф и рассчитывается по формуле:
  • Сила света (I). Измеряется в кд – кандела. Характеризует интенсивность светового потока. Рассчитывается по формуле:

для изотропного источника: 

для не изотропного источника:

Световая отдача. Измеряется в лм/Вт – люмен на Ватт. Эта величина может характеризовать экономичность искусственного источника света, грубо говоря, сколько электрической мощности преобразуется в свет.

Для искусственных источников света важна цветопередача. Цвета у предметов будут различаться лучше, если он освещается сплошным равномерным спектром. В идеале чем ближе излучение ламп к солнечному свету, тем она лучше и дороже. При индексе цветопередачи свыше 90 предметы будут казаться необычайно насыщенными.

При малом индексе будет затруднительно определить цвет предмета, однако контуры будут видны. От яркости это практически не зависит.

Разрядные лампы высокого давления

Последние разработки позволяют использовать для освещения разрядные лампы высокого давления. По ряду показателей подходят металлогалогенные (МГЛ). У этих ламп во внешней колбе размещается горелка с излучающие добавки. В горелке присутствует некоторое количество ртути, галоген (чаще йод) и атомы химических элементов (Tl, In, Th, Na, Li и др.).

Сочетание излучающих добавок достигает интересных параметров: высокая световая отдача (до 100 лм/Вт), отличная цветопередача Rа=80–98, диапазон Тцв от 3000 К до 6000 К, средний срок службы до 15 000 часов. Для работы этих ламп требуется пускорегулирующие аппараты и специальные светильники. Рекомендуется использовать эти источники для освещения помещений с большой площадью, с высокими потолками, просторных залов.

Натриевые лампы

Они принадлежат к числу наиболее эффективных источников видимого излучения: они обладают самой высокой световой отдачей среди газоразрядных ламп, экономны и имеют длительный срок службы. Обычно лампы излучают характерный желтый цвет, но если в состав зажигающего вещества входит ксенон, они дают яркий белый свет. Натриевые лампы бывают высокого (излучают свет теплого желтого цвета, подходящий для освещения больших парков, дорог и площадей) и низкого давления (идеально подходят для уличного освещения).

Достоинства натриевых ламп:

  • высокий уровень светоотдачи (до 130 лм/Вт);
  • длительный срок службы (до 12 000 часов);
  • энергетическая экономичность;

Недостатки натриевых ламп:

  • плохая цветопередача (Ra = 20);
  • долгое зажигание и перезажигание (до 10 минут).

Газоразрядные натриевые лампы применяются для освещения улиц, а также промышленных помещений, где основными условиями являются экономность и яркость, а требования к светопередаче несущественны.

Термическое излучение

Процесс термического излучения представляет собой физический процесс, при котором электронная подсистема возбуждается за счет передачи ей кинетической энергии от ядер атомов. Если какой-либо объект, например металлическую пластину, подвергнуть нагреву до высоких температур, то он начнет светиться. Сначала видимый свет будет иметь красный цвет, поскольку эта часть видимого спектра является наименее энергетической. При увеличении температуры металла он станет излучать бело-желтый свет.

Отметим, что при нагреве металла он сначала начинает испускать инфракрасные лучи, которые человек не способен видеть, но ощущает их в виде тепла.