Оглавление
- Что обозначают надписи на опорах ВЛ?
- Типы изоляторов по назначению и материалу
- Проходной изолятор [ править | править код ]
- Линейный изолятор
- Количество изоляторов в гирлянде ВЛ
- Различие по материалу исполнения
- Свойства диэлектриков
- Проходные
- Классификация
- Основные характеристики
- Определение напряжения по внешнему виду
- Эволюция полимерных изоляторов, технологии изготовления
- Типовая конструкция
- Проводники
- ЛЭП 220 кВ
Что обозначают надписи на опорах ВЛ?
Наверняка многие видели надписи на опорах ЛЭП в виде букв и цифр, но не каждый знает, что они означают.
Фото 10. Обозначения на опорах ЛЭП.
Означают они следующее: заглавной буквой обозначается класс напряжения, например Т-35 кВ, С-110 кВ, Д-220 кВ. Цифра после буквы указывает на номер линии, вторая цифра указывает на порядковый номер опоры.
Т- значит 35 кВ. 45- номер линии. 105- порядковый номер опоры. Данный способ определения напряжения ЛЭП по количеству изоляторов в гирлянде не является точным и не дает 100% гарантии. Россия огромная страна, поэтому для разных условий эксплуатации ЛЭП (чистота окружающего воздуха, влажность и т.д.) проектировщики рассчитывали разное количество изоляторов и использовали разные типы опор. Но если к вопросу подходить комплексно и определять напряжение по всем критериям, которые описаны в статье, то можно достаточно точно определить класс напряжения. Если Вы далеки от электроэнергетики, то для 100% определения напряжения ЛЭП Вам все же лучше обратится в местное энергетическое предприятие. Facebook
Типы изоляторов по назначению и материалу
Конструкция и размеры изоляторов определяются прикладываемыми к ним механическими нагрузками, электрическим напряжением установок и условиями их эксплуатации. Все электрические изоляторы классифицируются по таким принципам:
1. По назначению:
Опорные изоляторы
Опорные изоляторы внутренней установки предназначены для изоляции и крепления токоведущих частей в электрических аппаратах и распределительных устройствах.
Шинные изоляторы типа “бочонок” применяются для крепления токопроводящих шин внутри силовых шкафов или других устройств, для неподвижной фиксации и изоляции частей, находящихся под напряжением, от корпуса и панелей сборки с последующим подключением силовых проводников для распределения электроэнергии внутри щита. Крепление шинного изолятора осуществляется с помощью болта.
Изоляторы опорно-стержневые наружной установки предназначены для изоляции и крепления токоведущих частей в электрических аппаратах и распределительных устройствах электрических станций и подстанций переменного тока напряжением 10 – 35 кВ частотой до 100 Гц при температуре окружающего воздуха от – 600С до + 50оС в районах 1-4 степени загрязнения, например на объектах РЖД.
Проходные изоляторы
Изоляторы проходные внутренней установки предназначены для устройства переходов токоведущих линий сквозь стены либо для ввода электрических проводов внутрь блоков различной аппаратуры, для изоляции и соединения токоведущих частей закрытых распределительных устройств с открытыми распределительными устройствами.
Изоляторы тупиковые внутренней установки – частный случай проходного изолятора. Конструктивно тупиковые изоляторы похожи на проходные, но вместо сквозных отверстий в них предусматривается глухая стенка с торцевыми креплениями для закрепления проводников. Изоляторы тупиковые применяются в крайних ячейках секции КРУ для фиксации сборных шин.
Изоляторы проходные для установки на открытом воздухе – штыревые, стержневые, тарельчатые. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения. Проходные изоляторы внешней установки предназначены для изоляции от токоведущих частей закрытых распределительных устройств.
Тяговые изоляторы
Тяговые изоляторы или тяги изолирующие используются в электрических аппаратах для передачи движения от одних частей к другим, которые находятся под разными потенциалами. Изоляторы тяговые применются в разъединителях и выключателях нагрузки напряжением.
2. По материалу изготовления:
Стеклянные изоляторы. Производятся из особого закаленного стекла. В отличие от фарфоровых изоляторов, они обладают высокой механической прочностью, меньшими весом и габаритными размерами, большим сроком эксплуатации;
Фарфоровые изоляторы. Изготавливаются из электротехнического фарфора, поверх которого наносится слой глазури. После этого изделия обжигают в печах;
Полимерные изоляторы. Для производства используются особые пластические массы. Данные изделия предназначаются для изоляции и механического крепления токоведущих частей в электрических устройствах, а также для монтажа токоведущих шин распределительных механизмов электростанций.
Стеклянные и фарфоровые изоляторы во многом уступают полимерным изоляторам, которые более устойчивые к загрязнениям, температурным воздействиям и актам вандализма.
Популярные товары
Изоляторы опорные, проходные, тяговые
Изоляторы с емкостным делителем. Индикаторы наличия напряжения 10-35 кВ
Изоляторы опорно-стержневые ОСК 10-35 кВ
Шинопроводы и шины
Шинодержатели и крепеж
Проходной изолятор [ править | править код ]
Предназначен для прово́да токоведущих элементов через стенку, имеющую другой электрический потенциал. Проходной изолятор с токопроводом содержит токоведущий элемент, механически соединенный с изоляционной частью.
Изоляторы предназначены для крепления токопроводов, а также для создания изоляционных промежутков между токопроводами различных фаз и между токопроводами и заземленными конструкциями. По назначению изоляторы подразделяются на станционные, линейные и аппаратные.
Станционные изоляторы предназначены для закрепления токопроводов в закрытых распределительных устройствах, а также для пропуска их через стены и перекрытия. Они соответственно подразделяются на опорные и проходные.
Линейные изоляторы предназначены для закрепления проводов на ВЛ и ОРУ. Они подразделяются на штыревые, стержневые и подвесные.
Изоляторы высоковольтной аппаратуры, опорные и проходные, являются неотъемлемой частью аппаратуры и по конструктивному исполнению могут быть разной формы.
Диэлектрические материалы, из которых изготавливаются изоляторы, должны иметь высокую электрическую и механическую прочность. Эти характеристики должны обеспечиваться как в нормальных условиях эксплуатации, так и в аварийных режимах, при различных атмосферных условиях, быть негигроскопичными, трекингостойкими, работать в широком диапазоне температур и в агрессивной среде.
Всем этим требованиям удовлетворяют следующие материалы: глазурированный электротехнический фарфор, стекло и некоторые пластмассы.
Фарфор обладает следующими характеристиками: электрическая прочность
допустимый перепад рабочих температур 70ºC. Одно из достоинств фарфора как изоляции – низкая стоимость.
Стекло имеет электрическую прочность . Механические характеристики стекла примерно такие же, как у фарфора. Закаленное стекло допускает нагрузку до 530 кН. Стеклянные изоляторы могут изготавливаться методом штамповки и не требуют глазуровки. Прозрачность стекла позволяет легко обнаруживать трещины и другие дефекты, что облегчает контроль во время производства и эксплуатации.
Общий недостаток фарфоровых и стеклянных изоляторов – значительная масса и размеры.
В настоящее время широкое распространение получили изоляторы на основе стеклопластиков и полимерных покрытий. Полимерные изоляторы практически не повреждаются при транспортировке и имеют значительно меньшую (в 7–10 раз) металлоемкость подвесок, меньшую массу и размеры.
Металлическую арматуру изоляторов изготавливают из стали, ковкого и немагнитного чугунов или цветного металла. Немагнитный чугун и цветной металл применяются при больших токах с целью снижения потерь. Для крепления арматуры к диэлектрику используют высококачественные цементы и другие связующие.
Рис. 2.1 – Опорные изоляторы |
Для изготовления изоляторов высоковольтной аппаратуры используется также эпоксидная смола, бакелизированная бумага и слоистые пластики. В высоковольтных вводах применяют бумажномасляную и маслобарьерную изоляцию, защищенную фарфоровыми покрышками.
Под воздействием токов короткого замыкания, ветра, гололеда и веса проводов высоковольтная изоляция испытывает большие механические нагрузки и вибрации. Кроме того изоляция ВЛ и ОРУ подвержена воздействию тумана, дождя, загрязнению и резким колебаниям температуры. Поэтому изоляционные материалы должны обеспечивать длительную электрическую прочность с учетом климатических условий и уровня перенапряжений, а также достаточную механическую прочность.
Для обеспечения надежной и безопасной работы изоляция подвергается испытанию повышенным напряжением. Значения испытательных напряжений для изоляции разных классов напряжения приводятся в таблицах. Для изоляторов внутренней установки определяющим является сухоразрядное напряжение , а для изоляторов наружной установки – мокроразрядное – напряжение перекрытия под дождем.
Последнее изменение этой страницы: 2017-02-05; Нарушение авторского права страницы
Линейный изолятор
Линейные изоляторы применяются для крепления проводов воздушных линий электропередачи и шин на открытых распределительных устройствах. Эти изоляторы могут быть штыревые и подвесные. На открытых распределительных устройствах напряжением 35 кВ и выше применяют подвесные изоляторы, которые соединяются в гирлянды. Для крепления и изоляции токоведущих частей аппаратов применяют аппаратные изоляторы.
Линейные изоляторы испытывают механические нагрузки, которые создаются тяжением проводов и зависят от сечения проводов и длин пролетов между опорами, от температуры проводов, силы ветра и других факторов. Для штыревых линейных изоляторов эти нагрузки являются главным образом изгибающими.
Линейные изоляторы предназначены для крепления проводов воздушных линий и шин открытых распределительных устройств.
Линейные изоляторы предназначаются для крепления проводов воздушных линий ( см. гл. XI); аппаратные — для крепления и-вывода токоведущих частей аппаратов, станционные — для крепления шин в распределительных устройствах.
Линейные изоляторы, служащие для крепления проводов воздушных линий электропередачи и шин открытых распределительных устройств, подразделяются на штыревые и подвесные.
Линейные изоляторы предназначены для крепления проводов линий электропередачи.
Проходной изолятор для наружной установки ПНБ-35 / 600.| Маслонаполненный ввод МН-110. |
Линейные изоляторы подразделяются на штыревые и подвесные.
Линейные изоляторы предназначаются для крепления проводов воздушных линий ( см. гл.
Линейные изоляторы относятся к изоляторам наружной установки и по конструктивному выполнению разделяются на штыревые и подвесные.
Линейные изоляторы применяются для крепления и изоляции проводов воздушных линий электропередачи. Эта группа изоляторов подразделяется на опорные и проходные. Опорные изоляторы используются для создания неподвижных изолирующих опор для токоведущих частей, а проходные — для пропуска голых токоведущих частей сквозь стены, потолки и крыши зданий.
Линейные изоляторы, изготовленные из специального стекла, отожженные и закаленные в определенном режиме, обладают лучшими диэлектрическими и механическими характеристиками, чем фарфоровые. Используя высокие физико-механические свойства специального стекла, можно изготовлять линейные Изоляторы значительно меньших размеров, чем фарфоровые на те же электрические характеристики и механические нагрузки.
Соединение проводов в пролете. |
Линейные изоляторы служат для изоляции проводов и тросов и крепления их к опорам линий электропередачи. В условиях эксплуатации изоляторы находятся под электрическим напряжением и одновременно воспринимают механическую нагрузку от массы проводов, гололедных отложений, напора ветра, вибрации, пляски, а также тяжения проводов.
Линейные изоляторы служат для изоляции проводов и тросов и крепления их к опорам линий электропередачи. В условиях эксплуатации изоляторы находятся под электрическим напряжением и одновременно воспринимают механическую нагрузку от массы проводов, гололедных отложений, ветровой нагрузки, вибрации, пляски, а также тяжения проводов. Прочность изоляторов характеризуется механической разрушающей нагрузкой.
Количество изоляторов в гирлянде ВЛ
Казалось бы вопрос простой и широко распространённый, но “погуглив” я немного удивился, что информация по количеству изоляторов есть, но она разрознена и либо слишком уж детально описана в виде нормативных актов, либо наоборот слишком поверхностно.
Постараюсь кратко но ёмко раскрыть этот вопрос.
Изоляторы изготавливают в зависимости от назначения и эксплуатационных условий, а различают по нескольким конструктивным типам и материалам: – Штыревые (фарфор \ стекло ) – Подвесные (фарфор \ стекло \ полимеры) – Натяжные (дельта-древесина \ керамика \ эбонит \ полимеры … ) – Проходные (фарфор \ полимеры) – Опорные (фарфор \ стекло \ твёрдые пластмассы \ текстолит \ полимеры … ) – А также специфические для различной аппаратуры (из различных изоляционных материалов)
Для относительно низких напряжений до нескольких кВ в электросетях широко применяют в основном штыревые изоляторы (реже подвесные),а на оборудовании подстанций: проходные и опорные изоляторы. Напряжение таких сетей нужно “знать в лицо” (изолятор на глаз не вольтметр) Классов напряжений не так уж и много: от бытовых (~127 устарело)\~220\~380 вольт и распределительных сетей (~2 устарело)\~6\~10 кВ (кабельные ~2\~6\~10\~20 кВ) Для нужд троллейбусных и трамвайных контактных сетей напряжением =600 В используются натяжные изоляторы, в метрополитене контактный рельс =825 В удерживают специфические опорные изоляционные крепления. В контактных сетях железнодорожного транспорта =3 кВ и ~25 кВ применяются уже подвесные, натяжные и опорные изоляторы. А для линий электропередач высокого напряжения применяются только подвесные изоляторы в составе гирлянд, чем выше напряжение тем больше будет длина этой самой гирлянды пример: ~35 кВ (от 2-х до 5 в зависимости от опоры) ~110 кВ (от 7 до 10 в зависимости от опоры) ~154 кВ (от 9 до 12) ~220 кВ (от 14) фаза – толстый одиночный провод ~330 кВ (от 16) фаза – двойной провод ~500 кВ (от 17) фаза – тройной провод расположенный треугольником ~750 кВ (от 20) фаза – 4 или 5 проводов расположенные квадратом или кольцом На сегодняшний день доминируют стеклянные подвесные изоляторы ПС-70Е, также полимерные изоляторы изготовляемые для своего класса высоких напряжений.
Есть ещё и такая табличка(нажмите чтобы увеличить):
Количество подвесных изоляторов в гирляндах.
Если хочется более тщательно изучить этот вопрос, Вам поможет ПУЭ пункт 1.9 и РД 34.51.101-90-Инструкция по выбору изоляции электроустановок.
Различие по материалу исполнения
Чтобы рассмотреть классификацию видов и типов изоляторов нужно сначала разобраться, как их различают. Итак, в первую очередь они классифицируются по материалу изготовления:
- Фарфоровые.
- Стеклянные.
- Полимерные.
Фарфоровые можно назвать классикой, такие применялись раньше даже при наружной проводке в домах. Обычно они белого цвета, но могут быть и других цветов. Такие можно увидеть на разных электроустановках. Достоинством является то, что они выдерживают большие нагрузки на сжатие, обладают хорошими диэлектрическими свойствами.
Однако они бьются и ломаются. Отсюда возникает необходимость регулярной проверки их целостности, а часто для этого приходится отключать электроустановку и вытирать с них масло, пыль и другие загрязнения. Также проблемой является их большой вес.
Стеклянные, хоть и боятся ударов, но для контроля их целостности достаточно визуального осмотра, что можно провести и без отключения напряжения. В настоящее время в воздушных линиях электропередач, в качестве подвесных изоляторах они вытесняют керамику, в том числе и потому что меньше весят, а также в производстве дешевле.
Полимерные используются в помещении, на улице редко, в качестве исключения. Можно иногда увидеть опорные изоляторы из полимеров на ВЛ 10 кВ или других напряжений средней величины, но редко, или на неответственных линиях. Это обусловлено тем, что с течением времени и под действием УФ-излучений они стареют, внутренняя структура распадается и ухудшаются их электрические и механические характеристики.
Однако для оборудования, которое доступно для регулярного обслуживания и ремонта они применяются часто. Например, это могут быть опорные изоляторы шин в трансформаторных подстанциях и распределителях.
Свойства диэлектриков
Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.
Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости
С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).
Проходные
получили свое название по более узкому предназначению. Данный тип обеспечивает прохождение токоведущих элементов линий электропередачи сквозь различные препятствия, подобные металлическим корпусам трансформаторов, стены КТП, КРУ, с изоляцией их от земли.
ПРОХОДНЫЕ | ||
с токопроводом | без токопровода | полимерные |
ИП-10/630, ИП-10/1000, ИП-10/1600, ИПУ-10/630, ИПУ-10/1000, ИПУ-10/1600, ИПУ-10/2000, ИПУ-10/3150 | ПМА 10 1УХЛ 2 | ИППУ-35/400, ИППУ-35/630, ИППУ-35/1000, ИППУ-35/1600, ИППУ-10/4000, ИППУ-20/2000, ИППУ-20/3150 |
Предлагаемые нами изоляторы допущены к применению во всех энергетических системах как продукция, прошедшая аттестацию, согласно требованиям ОАО «ФСК ЕЭС».
Классификация
Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.
По назначению
В зависимости от назначения выделяют такие виды изоляторов:
- Стационарные – применяют для механического крепления токоведущих стержней или ошиновки в распределительных устройствах. В зависимости от назначения стационарные изоляторы дополнительно подразделяются на опорные и проходные. Так опорные изоляторы выступают в роли основания, на которое крепятся шины в ячейках или несущих конструкциях. Проходные изоляторы позволяют провести токоведущий элемент сквозь стену или перекрытие помещения.
- Аппаратные – имеют схожее назначение со стационарными, но применительно к каким-либо аппаратам. К примеру, аппаратные изоляторы нашли широкое применение в выпрямительных установках, силовых приборах, комплектных подстанциях, установках аппаратов высокого напряжения и прочих агрегатах. Посмотрите на рисунок 5, здесь представлен пример его использования, где он имеет обозначение АИ.
Рис. 5. Пример аппаратных изоляторов
- Линейные – используются для наружной установки под высоковольтные линии или ошиновку открытых распредустройств. Отличительной чертой линейных изоляторов является наличие широких ребер или юбок, предназначенных для увеличения пути поверхностного пробоя в случае выпадения осадков.
По материалу исполнения
В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:
- С фарфоровым корпусом – отличаются высокой механической прочностью на сжатие, но боятся динамических воздействий. Для предотвращения появления проводящих каналов, из-за оседания пыли и грязи на поверхности, керамический материал покрывается глазурью.
- Полимерные изоляторы – подразделяются на модели, которые имеют упругую деформацию и монолитные. Отличаются куда большим удельным сопротивлением материала, чем фарфоровые. Но мягкая поверхность в большей мере подвержена загрязнению, чем покрытый глазурью фарфор. Помимо этого из-за воздействия ультрафиолета полимер разрушается и утрачивает свойства, поэтому их применяют для внутренней установки.
- Стеклянные электрические изоляторы – отличаются не такой высокой прочностью, подвержены сколам при динамических воздействиях. Но в отличии от других материалов не подвержены воздействию агрессивных реагентов. Обладают меньшим весом и более просты в обслуживании, чем фарфоровые.
По способу крепления на опоре
В зависимости от способа крепления бывают:
Классификация по способу крепления
- Штыревого типа (а) – крепятся посредством металлической арматуры и выступают в роли опоры воздушных ЛЭП, откуда и возникло название опорно-штыревые изоляторы.
- Подвесные (б) – выполняются тарельчатыми изоляторами, которые собираются в гирлянды, в зависимости от класса напряжения присоединенных к ним электрических аппаратов.
- Стержневые (в) – имеют форму сплошного стержня, который устанавливается в качестве опорного или подвешивается за элементы арматуры в качестве натяжного. Опорно-стержневые изоляторы устанавливается в распредустройствах для изоляции шин. На их краях посредством чугунных крыльев крепятся токоведущие части.
Основные характеристики
Ко всем изоляторам, независимо от их назначения, предъявляются общие требования. Они должны обеспечивать достаточный уровень электрической прочности. Этот показатель зависит от значения напряженности электрического поля, при котором изоляционный материал начинает терять свои диэлектрические свойства.
Каждый изолятор должен иметь достаточную механическую прочность, обеспечивающую устойчивость к динамическим воздействиям, возникающим при коротких замыканиях между токоведущими частями. Свойства изоляторов сохраняются неизменными, несмотря на дождь, снегопад и прочие агрессивные воздействия окружающей среды. Теплостойкость изолирующих устройств обеспечивает сохранение их свойств при перепадах температур в определенных пределах. Поверхность изоляторов должна быть устойчивой к действию электрических разрядов.
Основными электрическими характеристиками являются следующие:
- Номинальное и пробивное напряжения. Пробивным считается минимальное значение напряжения, вызывающее пробой изолятора.
- Значения разрядных и выдерживаемых напряжений, при которых изолятор сохраняет работоспособность в сухом и мокром состоянии.
- Импульсные разрядные напряжения с различными полярностями.
Механическими характеристиками изоляторов считаются их вес и размеры, а также минимальное значение номинальной разрушающей нагрузки, измеряемой в ньютонах. Данная нагрузка воздействует на головку изолятора перпендикулярно оси.
Определение напряжения по внешнему виду
Следующий этап – определение мощностей ВЛ.
Как же узнать напряжение на ЛЭП по её внешнему виду? Легче всего это сделать по количеству проводов и по числу изоляторов. Самый простой способ – определение по изоляторам.
Существуют ВЛ разных классов напряжения. Рассмотрим поочередно каждую.
ЛЭП на 0,4 киловольта (400 Вольт) – низковольтные, встречающиеся во всех населенных пунктах. В них всегда используются штыревые изоляторы из фарфора или стекла. Опоры изготавливают из железобетона или дерева. В однофазной линии два провода. Если фазы три, проводников будет четыре и более.
Далее идут ЛЭП на 6 и 10 киловольт. Визуально они неотличимы друг от друга. Здесь всегда по три провода. В каждом используется два штыревых фарфоровых или стеклянных изолятора или один, но большего номинала. Используются эти трассы для подведения питания к трансформаторам. Минимальное расстояние до частей, проводящих ток, здесь составляет 0,6 м.
Часто в целях экономии совмещают подвеску проводников 0,4 и 10 кВ. Охранной зоной таких трасс является расстояние 10 м.
В ЛЭП на напряжение 35 кВ, используются подвесные изоляторы в количестве от 3 до 5 штук в гирлянде к каждому из трёх фазных проводов.
Обычно такие воздушные магистрали через территорию городов не проходят. Допустимым считается расстояние – 0,6 м, а охранная зона определяется 15 метрами. Опоры должны быть железобетонными или металлическими, с разнесенными друг от друга на допустимое расстояние проводниками, несущими ток.
В ЛЭП на напряжение 110 кВ монтаж каждого из проводов осуществляется на отдельной гирлянде из 6-9 подвесных изоляторов. Минимально близким к проводникам, является расстояние в 1 метр, а охранная зона определяется 20 метрами.
Материалом для опоры служит железобетон или металл.
Если напряжение 150 кВ, применяют 8-9 подвесных изоляторов на каждую гирлянду в ЛЭП. Расстояние 1,5 м до проводников тока считается в этом случае минимальным.
Когда напряжение 220 кВ, число используемых изоляторов находится в пределах от 10 до 40 единиц. Фаза передаётся по одному проводу.
Линии используют для подведения электроэнергии к крупным подстанциям. Наименьшее расстояние приближения к проводникам составляет 2 м. Величина охранной зоны – 25 м.
В последующих классах высоковольтных ЛЭП появляется отличие по числу проводов на фазу.
Если произведен монтаж двух проводников на одну фазу, а изоляторов в гирляндах по 14, перед вами магистраль 330 кВ.
Минимальным расстоянием до токоведущих частей в ней считается 3,5 м. Необходимое увеличение охранной зоны до 30 м. Материалом для опор служит железобетон или метал.
Если фаза расщепляется на 2-3 проводника, а подвесных изоляторов в гирляндах по 20, то напряжение ВЛ составляет 500 кВ.
Охранная зона в этом случае ограничивается 30 метрами. Опасной считается дистанция менее 3,5 м до проводов.
В случае разделения фазы на 4 или 5 проводников, соединение которых кольцевое или квадратное, и присутствия в гирляндах 20 и более изоляторов, напряжение ВЛ составляет 750 кВ.
Охранная территория таких трасс – 40 м, а приближение к токопроводящим частям ближе 5 м опасно для жизни.
В России есть единственная в мире ЛЭП, напряжение которой 1150 кВ. Фазы в ней делятся на 8 проводов каждая, а в гирляндах присутствуют 50 и более изоляторов.
К этой трассе не стоит приближаться более чем на 8 метров. Увидеть такую высоковольтную линию можно, например, на участке магистрали «Сибирь – Центр».
Получить подробную информацию о любой ВЛ, её местоположении можно на интерактивной карте в сети интернет.
Эволюция полимерных изоляторов, технологии изготовления
Полимерные изоляторы I поколения
Первые полимерные изоляторы, относящиеся к изоляторам I поколения, изготавливались по так называемой «шашлычной» технологии, при которой оболочка наносилась на стеклопластиковый стержень вручную пореберной склейкой. Разгерметизация любого из клеевых швов полимерного изолятора I поколения приводила к его внутреннему увлажнению и скорому выходу из строя по причине сквозного пробоя или механического разрушения стеклопластикового стержня.
Полимерные изоляторы II поколения
На изоляторах II поколения был осуществлен переход на цельнолитую кремнийорганическую защитную оболочку на основе силиконов, устойчивых к воздействию ультрафиолетового излучения и других атмосферных факторов. Однако герметизация узла входа стержня в оконцеватель, на изоляторах II поколения, осуществлялась по-прежнему проклейкой. На изоляторах II поколения также отмечаются случаи разгерметизации стыка оконцевателя и защитной оболочки, что приводит к внутреннему увлажнению стержня. Это становится причиной неизбежной потери изолятором его механической и электрической прочности.
Полимерные изоляторы III поколения
Повышение надежности полимерных изоляторов III поколения обеспечивается защитой от проникновения влаги самого слабого узла — входа стержня в оконцеватель. Вход перекрывается защитной оболочкой, обладающей высокой адгезией к оконцевателю и стержню изолятора. Данная технология является не новой,а является доработкой технологии цельного литья. Данный способ не используется в Европе, т.к. считается что со временем резина может потерять контакт с металлическими частями изолятора.
Типовая конструкция
Для начала разберем пример типовой конструкции на эскизе штыревого изолятора.
Рис. 3. Изолятор в разрезе
Как видите на рисунке 3, в конструкции предусмотрены ребра А и Б. Которые позволяют увеличить электрическую прочность за счет удлинения пути для тока утечки по поверхности. В связи с различными углами уклона ребер обеспечивается возможность защиты от выпадающих осадков. Так ребра А имеют меньший уклон, поэтому они наиболее актуальны для твердых осадков – снега, грязи и т.д. Потому что влага может подлизываться под низ и значительно сокращать величину разрядного напряжения.
В отличии от них, юбки Б позволяют полностью исключить возможность попадания влаги при дождливой погоде. Это обеспечивает постоянный запас сопротивления, которое и гарантирует величину напряжения пробоя. Помимо этого, юбки Б не боятся намерзания гололеда и могут обеспечивать нормальную работу высоковольтных линий в случае сложной метеорологической ситуации.
Для крепления головки стержня предусмотрена резьба В, которая позволяет закрепить конструкцию на консоли или армирующих крюках. В верхней части находится желоб Г для фиксации провода. Дополнительно провод увязывается проволокой для более надежного крепления воздушных ЛЭП.
Рис. 4. Конструкция проходного изолятора
Проходной изолятор имеет немного иную конструкцию, так как его задача не только изолировать токоведущую шину от стены, но и обеспечить нормальное протекание тока внутри самого изолятора. Посмотрите, шина обжимается с обеих сторон алюминиевой крышкой для ее надежного закрепления снаружи. Внутри механическое крепление осуществляется за счет герметика, который помимо этого предотвращает попадание загрязнителей и агрессивных веществ. Также для удобства крепления проводов или шин может устанавливаться дополнительный лепесток на самой крышке, как показано на рисунке 4.
Защитная оболочка из кремнийорганической резины препятствует электрическому пробою по поверхности от шины до фланца. Изоляция от пробоя внутренних элементов выполняется посредством стеклопластиковой трубы, которая помещается внутрь ребристой рубашки. Более детальную информацию о параметрах можно почерпнуть из обозначения модели.
Проводники
Все проводники располагают электрическими зарядами, которые при влиянии разности в потенциалах движутся в сторону одного из полюсов. Положительные заряды устремлены к отрицательному концу, а отрицательные к положительному. Этот поток – электрический ток.
Ионные вещества и растворы способны проводить электричество, но максимальную проводимость предоставляют металлы. В проводах часто используют медь, так как она обеспечивает отличную проводимость и дешево стоит. Но для высокой проводимости иногда используют позолоченные провода.
У каждого проводника есть предел мощности (объем тока, который может переносить).
ЛЭП 220 кВ
По внешним признакам напоминают 110 кВ, но больше, выше, и имеют более длинные гирлянды изоляторов — около 10-20 штук, считать заколебаешься. Есть мнение, что расщепления фаз на таких ЛЭП не бывает, по прежнему 1 фаза, это 1 провод, но мнение это неточное. Опоры всё также из металлоконструкций, значительно реже — бетона.
Встречаются линии 220 кВ значительно реже чем 110 кВ. Связывают, как правило, разные населенные пункты, районы, округи, могут иметь значительную протяженность до нескольких десятков, а то и сотен километров. Как и линии 110 кВ, обычно идут двумя цепями, но одноцепные варианты также имеют место быть. Находясь возле таких линий уже можно услышать отчётливый треск — коронные разряды берут своё.
Охранная зона КВЛ 220 кВ составляет 25 метров.
Опора ЛЭП 220 кВ — ПС «Дагомыс»
Двухцепная опора 220 кВ
ВЧ заградители 220 кВ
Табличка на опоре
Опоры двухъярусной конструкции