Выбор номинала автомата защиты

Устройство и принцип действия

Конструктивно МТЗ состоят из двух важных узлов: автоматического выключателя и реле времени. Они могут быть объединены в одной конструкции либо размещаться отдельными блоками.

Отличия от токовой отсечки

Из всех видов защиты по надёжности лидирует токовая отсечка. Примером может служить защита бытовой электросети устройствами с применением плавких предохранителей или пакетных автоматов. Метод токовых отсечек гарантирует обесточивания защищаемой цепи в аварийных ситуациях. Но для возобновления подачи электроэнергии необходимо устранить причину отсечения и заменить предохранитель, либо включить автомат.

Недостатком такой системы является то, что отключение может происходить не только вследствие КЗ, но и в результате даже кратковременного превышения параметров по току нагрузки. Кроме того, требуется участие человека для восстановления защиты. Эти недостатки не критичны в бытовой сети, но они неприемлемы при защите разветвлённых линий электропередач.

Именно эти два фактора кардинально отличают МТЗ от простых токовых отсечек, со всеми их недостатками.

Принцип действия МТЗ

Между узлом задержки и токовым реле существует зависимая связь, благодаря которой отключение происходит не на начальной стадии возрастания тока, а спустя некоторое время после возникновения нештатной ситуации. Данный промежуток времени слишком короткий для того, чтобы величина тока достигла критического уровня, способного навредить защищаемой цепи. Но этого хватает для предотвращения возможных ложных срабатываний защитных устройств.

Наименьшая выдержка времени задаётся на самых удалённых участках линий. По мере приближения МТЗ к источнику тока, временные задержки увеличиваются. Эти величины определяются временем, необходимым для срабатывания защиты и именуются ступенями селективности. Сети, построенные по указанному принципу, образуют зоны действия ступеней селективности.

Такой подход обеспечивает защиту поврежденного участка, но не отключает линию полностью, так как ступени селективности увеличиваются по мере удаления МТЗ от места аварии. Разница величин ступеней позволяет защитным устройствам, находящимся на смежных участках, оставаться в состоянии ожидания до момента восстановления параметров тока. Так как напряжение приходит в норму практически сразу после отсечения зоны с коротким замыканием, то авария не влияет на работу смежных участков.

Примеры использования защиты

МТЗ используют:

  • с целью локализации и обезвреживания междуфазных КЗ;
  • для защиты сетей от кратковременных перегрузок;
  • для обесточивания трансформаторов тока в аварийных ситуациях;
  • в качестве протектора при запуске мощного, энергозависимого оборудования.

Задержка времени очень полезна при пуске двигателей. Дело в том, что на старте в цепях обмоток наблюдается значительное увеличение пусковых токов, которое системы защиты могут воспринимать как аварийную ситуацию. Благодаря небольшой задержке времени МТЗ игнорирует изменение параметров сети, возникающие при пуске или самозапуске электродвигателей. За короткое время показатели тока приближаются к норме и причина для аварийного отключения устраняется. Таким образом, предотвращается ложное срабатывание.

Пример подключения МТЗ электродвигателя иллюстрирует схема на рисунке 1. На этой схеме реле времени обеспечивает уверенный пуск электромотора до момента реагирования токового реле.


Рисунок 1. МТЗ с выдержкой времени

Аналогично работает задержка времени при кратковременных перегрузках в защищаемой сети, которые не связаны с аварийными КЗ. Отсечка действует лишь в тех случаях, когда на защищаемой линии возникает значительное превышение номинальных значений, которое по времени превосходит величину выдержки.

Для надёжности защиты на практике часто используют схемы двухступенчатой и даже трёхступенчатой защиты участков цепей. Стандартная трёхступенчатая защитная характеристика выглядит следующим образом (Рис. 2):


Рис. 2. Карта селективности стандартной трёхступенчатой защиты

На абсциссе отмечено значения тока, а на оси ординат время задержки в секундах. Кривая в виде гиперболы отображает снижение времени защиты от возрастания перегрузок. При достижении тока отметки 170 А включается отсчёт времени МТЗ. Задержка времени составляет 0,2 с, после чего на отметке 200 А происходит отключение. То есть, разрыв цепи происходит в случае отказа защиты остальных устройств.

Беларус-1025.2

Характеристики 1025.2 1025.3
Двигатель Д-245 Д-245S2
Экологический класс Stage 0 Stage II
Тип дизель с турбонаддувом дизель с турбонаддувом и интеркулером
Мощность, л.с. 105 110
Крутящий момент, Нм 385 429
Коэффициент запаса крутящего момента, % 15 25
Номинальная частота вращения, об/мин 2200
Масса, кг 4480 4665
Длинна/Ширина/Высота, мм 4205/1970/2820 4600/1970/2820

Модели «Беларус-1221.3» и «Беларус-1523.3» конструктивно изменились незначительно. Основное отличие – оснащение двигателя промежуточным охладителем воздуха (интеркулером), подаваемого в цилиндры турбиной, что в свою очередь позволило довести двигатель до требуемых экологических норм, при этом повысив его мощность, крутящий момент и коэффициент запаса крутящего момента, что улучшило тяговые характеристики тракторов и позволило уменьшить расход топлива.

Дифференциальная защита, автоматика, управление и сигнализация электродвигателя. БЭ2502А0802

Состав

Терминал дифференциальной защиты электродвигателя совместно с терминалом защиты, автоматики и управления электродвигателя БЭ2502А07ХХ осуществляет комплексную защиту электродвигателя мощностью более 5 МВт.Принцип действияДифференциальная токовая защита (ДТЗ): — токозависимая характеристика срабатывания с двумя коэффициентами торможения; — два варианта определения тормозного тока. Дифференциальная токовая отсечка (ДО) предназначена для обеспечения надежной работы при большихтоках повреждения в зоне действия защиты.

Максимальная токовая защита:

— МТЗ имеет три ступени: первая и вторая – с независимой времятоковой характеристикой, третья – с зависимой или независимой времятоковой характеристикой; — ступени могут быть выполнены направленными и иметь контроль от ИО минимального напряжения и напряжения обратной последовательности; — третья ступень МТЗ может быть задействована на сигнализацию и отключение либо только на сигнализацию; — предусмотрено загрубление уставок МТЗ в два раза на время пуска электродвигателя.

Защита от замыканий на землю:

— реализована одним из способов: по току нулевой последовательности 3I0 основной частоты; по напряжению нулевой последовательности 3U0; по току 3I0, напряжению 3U0 и взаимному направлению тока и напряжения нулевой последовательности (направленная).

Защита от несимметричного режима:

— реализована на принципе измерения соотношения токов обратной и прямой последовательностей.

Защита минимального напряжения:

— срабатывает при снижении всех линейных напряжений ниже уставки в течение заданного времени.

Защита от потери нагрузки:

— срабатывает, если электродвигатель в работе, но минимальный из фазных токов меньше тока уставки в течение заданного времени.

Защита от обратной мощности:

— срабатывает, если от электродвигателя на шины в течение заданного времени поступает активная мощность, превышающая уставку; — cрабатывает при повышении значения реактивной мощности в течение заданного времени больше уставки.

Защита от затянутого пуска:

— реализуется либо на принципе контроля «I2xt», либо по превышению максимального фазного тока уставки пускового тока в течение заданного времени t; — работает только в режиме «Пуск электродвигателя».

Защита от блокировки ротора:

— срабатывает только в режиме «Работа электродвигателя», если ток одной из фаз превышает уставку пускового тока в течение заданного времени срабатывания.

Защита от термической перегрузки:

— функция контролирует нагрев электродвигателя относительно нагрева в нормальном режиме работы; — нагрев электродвигателя определяется по тепловой модели, определенной дифференциальным уравнением.

Функция ограничения количества пусков:

— ограничивает количество разрешенных за час пусков; — запрещает повторное включение электродвигателя в течение минимального времени между пусками.

УРОВ:

— обеспечивает действие на отключение смежных выключателей при срабатывании любых защит терминала или внешних защит и отказе выключателя.

АПВ выключателя:

— обеспечивает однократное автоматическое повторное включение выключателя; — предусмотрена возможность запрета АПВ при действии на отключение внутренних и внешних токовых защит, при срабатывании УРОВ, ЗДЗ и внешних сигналов.

МТЗ линии 6-35 кВ

Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит.

1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:

в данной формуле мы имеем следующие составляющие:

Iс.з. — ток срабатывания защиты 2РЗ, величина, которую мы и определяем

— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.

kсзп — коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.

— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)

Iраб.макс. — максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.

2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:

Iс.з.посл. — ток срабатывания защиты 2РЗ

kн.с. — коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.

— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.

Первая сумма в скобках — это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов. Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.

3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:

kсх — коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.

— коэффициент трансформации трансформатора тока.

4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.

Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.

5) Определяемся с уставкой по времени

Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.

То есть tс.2рз=tс.1рз+dt, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.

Если предыдущая РЗ является токовой отсечкой или же РЗ выполнена на электронных (полупроводниковых) реле — dt можно принять 0,3с. Если же в РЗ используются электромеханические реле, то dt может быть 0,5…1,0. Для различных реле эта величина может доходить до нескольких секунд.

Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.

В общем выбор мтз состоит из трех этапов:

  • несрабатывание 2РЗ при сверхтоках послеаварийных режимов
  • согласование 2РЗ с 1РЗ
  • обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)

Значение автоматических выключателей

Автомат, защищающий сеть, выполняет 2 задачи:

  • вовремя определить слишком большой ток;
  • разорвать цепь до того, как возникнет повреждение.


Характеристики автоматов и срабатывания электромагнитного расцепителя Главная задача автоматического выключателя — отреагировать на появление чрезмерного тока и обесточить сеть. Опасно влияют на сеть 2 вида токов:

  • ток перегрузки, возникающий из-за включения большого количества приборов в сеть;
  • сверхтоки из-за короткого замыкания.

Вам это будет интересно Установка трёхфазного счетчика

Современные электромагнитные устройства легко и безошибочно определяют ток короткого замыкания и выключают нагрузку. С током перегрузки проблем больше. Они мало чем отличаются от номинального значения и в течение некоторого промежутка времени протекают без последствий. Проблема заключается в наличии предельного значения тока нагрузки, который и вредит сети.

Обратите внимание! В автоматических выключателях 3 вида расцепителей — механический для ручного выключения, электромагнитный для реагирования на токи короткого замыкания и тепловой для защиты от перегрузок. Устройство автоматов


Устройство автоматов

5.8. Применение токовых отсечек

Токовые отсечки используются как основные (в сетях низкого напряжения) и резервные (сети высокого напряжения) защиты на линиях с односторонним питанием. На линиях с двусторонним питанием отсечки используются как резервные защиты.

Отсечки применяются как резервные защиты для мощных силовых трансформаторов и как основные для маломощных.

· токовая отсечка в двухфазном, двухрелейном исполнении – комплекты КЗ 9 и КЗ9/2;

· МТЗ с независимой выдержкой времени в двухфазном, двухрелейном исполнении – КЗ12;

· МТЗ в двухфазном двухрелейном исполнении и ТО – двухфазное, трехрелейное исполнение – комплект КЗ13;

· МТЗ с независимой выдержкой времени – двухфазное, трехрелейное исполнение – комплект КЗ17.

1. Конструктивно одна из самых простых защит.

2. Высокая быстрота действия.

1. Неполный охват зоной действия защищаемой линии.

2. Непостоянство зоны действия под влиянием сопротивлений в месте повреждения и изменений режима системы.

Источник

Принцип действия токовой отсечки

При установке показателей для отключения нужно выбирать их таким образом, чтобы отключение происходило как можно быстрее, чем может произойти повреждение или разрушения в цепи.

Токовая отсечка реализуется совершенно разными способами. Зачастую для такого отключения применяется электромагнитное реле тока. В них при возникновении короткого замыкания происходит смыкание контактов, и подается сигнал для отключения защищаемого сегмента или участка цепи.

Так же имеется такой тип защиты – как предохранители. Они срабатывают из-за повышения температуры, из-за электрического тока. То есть, проще говоря, в них находится очень плавкий элемент, которые под воздействие разрушается и таким образом происходит отключение.

Примеры и описание схем МТЗ

С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.

МТЗ на постоянном оперативном токе.

Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.

Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.

Однорелейная на оперативном токе

В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.

Схема на 1 реле

Преимущества: одно токовое реле и всего два провода для подсоединения.

Недостатки:

  • сравнительно низкая чувствительность;
  • недостаточная надёжность – при отказе одного элемента защиты участок цепи остаётся незащищённым.

Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.

Двухрелейная на оперативном токе

В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.

Схема на 2 реле

К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.

Трехрелейная

Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.

Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.

Рисунок 4. Схема трёхфазной трёхрелейной защиты

Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.

Рис. 5. Схема двухфазного трёхрелейного подключения МТЗ

На схема обозначены:

  • KA – реле тока;
  • KT – реле времени;
  • KL – промежуточное реле;
  • KH – указательное реле;
  • YAT – катушка отключения;
  • SQ – блок контакт, размыкающий цепь;
  • TA – трансформатор тока.

Максима́льная то́ковая защи́та (МТЗ)

— вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.

Читать также: Вибротрамбовка своими руками с электродвигателем

Принцип действия токовой отсечки

При установке показателей для отключения нужно выбирать их таким образом, чтобы отключение происходило как можно быстрее, чем может произойти повреждение или разрушения в цепи.

Токовая отсечка реализуется совершенно разными способами. Зачастую для такого отключения применяется электромагнитное реле тока. В них при возникновении короткого замыкания происходит смыкание контактов, и подается сигнал для отключения защищаемого сегмента или участка цепи.

Так же имеется такой тип защиты – как предохранители. Они срабатывают из-за повышения температуры, из-за электрического тока. То есть, проще говоря, в них находится очень плавкий элемент, которые под воздействие разрушается и таким образом происходит отключение.

МТЗ линии 6-35 кВ

Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит. 1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:

в данной формуле мы имеем следующие составляющие:

Iс.з.

— ток срабатывания защиты 2РЗ, величина, которую мы и определяем

— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.

kсзп

— коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.

— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)

Iраб.макс.

— максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.

2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:

Iс.з.посл.

— ток срабатывания защиты 2РЗ

kн.с.

— коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.

— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.

Первая сумма в скобках

— это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов.Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.

3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:

kсх

— коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.

— коэффициент трансформации трансформатора тока.

4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.

Советуем изучить — Указательные и сигнальные реле в электроустановках

Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.

5) Определяемся с уставкой по времени

Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.

То есть tс.2рз=tс.1рз+dt

, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.

Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.

В общем выбор мтз состоит из трех этапов:

  • несрабатывание 2РЗ при сверхтоках послеаварийных режимов
  • согласование 2РЗ с 1РЗ
  • обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)

Понятие, виды и принцип действия

Токовая отсечка — это устройство, осуществляющее защиту всех элементов электрической сети, которое отличается от других типов приборов своим быстродействием. Основным принципом работы, который полностью отличает прибор от подобных, является выбор ситуаций, в которых произойдёт разрыв соединения. Можно подобрать необходимую величину тока, определяющую значения для отключения.

Этот механизм способен выполнять полный мониторинг показателей величин тока на каком-либо конкретном участке. Если в какой-то момент произойдёт превышение показания тока на заданную величину, то будет реакция, при которой участок электрической сети полностью отсоединится от подачи электричества. Это максимальная токовая отсечка. Показания на срабатывание защиты называется уставкой.

Различают 2 вида механизмов:

  1. С мгновенным действием. Они имеют своё время срабатывания. У таких устройств главным элементом является электрическое реле. В качестве вспомогательных элементов у данных конструкций есть реле, которые обеспечивают подачу сигнала на отключение.
  2. С временной задержкой. В таких конструкциях есть элемент, благодаря которому можно устанавливать временные параметры. Эти устройства способны выдерживать диапазон до 0,6 секунды.

Во время выбора показателя на разрыв необходимо учитывать, что отключение сети должно происходить максимально быстро. Так вероятность повреждения электрической цепи будет меньше. Также существуют разные конструктивные решения, с помощью которых обеспечивается работа механизма:

  1. Электромагнитная конструкция.
  2. Предохранительная.

Также существуют предохранители. Их работа происходит из-за сильного увеличения температуры. Внутри находится элемент, который легко расплавляется под действием высоких температур. Так и происходит разрыв цепи.

Как работают автоматические выключатели

Работа автоматического выключателя в различных режимах происходит по простому принципу.

Нормальный режим

Во время взвода рычага управления выключателем приводится в движение механизм взвода и расцепления, тем самым осуществляя коммутацию силовых контактов. После коммутации ток протекает от питающего провода или кабеля, подключенного к винтовому зажиму. Через этот зажим по контактам проходит ток, причем сначала по неподвижным, а затем и по подвижным.

Вам это будет интересно Пускатель звезда треугольник

Короткое замыкание

В данном режиме электромагнитный расцепитель автоматического выключателя должен произвести мгновенное отключение нагрузки. Принцип действия заключается в следующем: при значительном превышении номинального показателя, протекающего через обмотку электромагнита, возникает мощное магнитное поле, которое тянет вниз якорь с подвижным контактом.

Последствия КЗ

Якорь в свою очередь надавливает на рычажок спускового механизма, в результате чего происходит отключение нагрузки.

Перегрузка

За защиту от перегрузки отвечает тепловой расцепитель. Принцип работы данного расцепителя заключается в следующем: когда энергия, протекающая через биметаллическую пластину, становится равной или больше установленного значения, пластина нагревается и постепенно изгибается.

Обратите внимание! Достигнув определенного угла изгиба, она надавливает своим кончиком на рычажок спускового механизма. Таким образом автомат отключается