Оглавление
- ↑ Моно-версия
- Основные параметры
- Электронные регуляторы тембра
- ↑ Улучшенный регулятор баланса Бернда Людвига (Bernd Ludwig)
- Как устроены регуляторы для наушников?
- Пассивные регуляторы
- Решение проблем со значком громкости
- Как устроен регулятор?
- Тонкомпенсированный регулятор громкости на резисторе без дополнительных отводов
- Изготовление конструкции
- Что такое тонкомпенсированный регулятор громкости, примеры схем
- ↑ Примечания переводчика
- ↑ Об управлении
- Профессиональные модели
- Вместо заключения…
- Самостоятельная сборка регулятора
- Регулятор громкости с тонкомпенсацией
- Профессиональные модели
- Классификация по условиям эксплуатации
- Схемы индикации.
↑ Моно-версия
Следующий трюк использован в некоторых гитарных усилителях. Используются сдвоенные потенциометры, что не слишком подходит для стерео, так счетверенные линейные потенциометры достаточно дефицитны. Схема показана на рис. 5.
Приближение к логарифмической зависимости очень хорошее, по крайней мере, в диапазоне 30 дБ, это несколько лучше, чем у версии, показанной на рис. 1. Зависимость регулировки от угла поворота показана на рис. 6.
При уменьшении уровня от максимального в диапазоне 25 дБ, зависимость почти линейна (т.е. действительно логарифмическая). Это хороший способ получить хороший результат, но, как уже отмечалось, для стереоусилителя требуется счетверенный потенциометр. Это ограничивает полезность данного решения.
Основные параметры
Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности
Как вы уже, наверное, поняли, придется еще и другие принять во внимание:
- Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
- Рабочая температура.
- Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
- Эффективный угол поворота регулятора.
Параметры мощных переменных резисторов
Конечно, основные параметр важны и именно они являются определяющими
Но стоит обращать внимание и на температурный режим
Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры
Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.
Электронные регуляторы тембра
Все электронные регуляторы отличаются компактными размерами, и предельное напряжение выдерживают большое. В данном случае они не способны работать без усилителя. Стабилизаторы, как правило, применяются только линейные. Цепи диодов располагаются сразу за платой.
Искажения устройством подавляются за счет резисторов. С предельной частотой регулятору помогают справиться стабилизаторы. Выпрямители устанавливаются крайне редко. Энергопотребление таких устройств высокое, а в преобразователях они не нуждаются. Увидеть указанные приборы на микшерах можно довольно часто.
Доброго времени суток.
Сегодня я решил объединить несколько вопросов в одну статью (тем более, что решение по обоим проблемам будет одинаковое).
Как правило, при исчезновении значка громкости (да и вообще при разных проблемах с ним) достаточно проделать ряд нехитрых шагов, чтобы восстановить работу. Приведу их ниже по порядку.
↑ Улучшенный регулятор баланса Бернда Людвига (Bernd Ludwig)
Бернд Людвиг предложил полезный вариант «улучшенного регулятора баланса». Следует отметить, что данный вариант требует высокого сопротивления нагрузки, предложенный выше пассивный «улучшенный регулятор громкости» не может быть использован в этой схеме. Схема включения очень похожа на концепцию улучшенного регулятора громкости на рис. 1, за исключением того, что эта идея используется в «обратном направлении». Имейте в виду, что многие (особенно ранние японские) регуляторы баланса используют специально разработанные потенциометры, они не подходят для схем, показанных ниже. Эти специально разработанные потенциометры имеют токопроводящую подкову половина которой металлизирована. В среднем положении благодаря металлизированным секторам дорожек сигнал проходит только по металлизированным частям и затухания сигналов не происходит.
При повороте регулятора, в одном канале ползунок движется по металлизированной части и уровень сигнала в этом канале не меняется, а в другом канале ползунок движется по графитовой поверхности с высоким сопротивлением, что приводит к затуханию сигнала в данном канале. По моему мнению такая регулировка является неудовлетворительной для Hi-Fi.
Стандартная схема регулировки баланса/громкости с использованием обычных потенциометров (в одном канале) показана на рис. 7 ниже.
Типичное отношение сопротивлений регуляторов BAL = 2,5*VOL Например: VOL = 10 кОм log, BAL = 25 кОм linear
Добавление резистора ‘R’ как показано на рис. 8
дает возможность двух интересных улучшенных вариантов стандартной схемы регулировки
Обратите внимание, что переключатель является необязательным и может быть заменен перемычкой
↑ Пример А: R = VOL (например, 10 кОм)
В среднем положении регулятора баланса, он влияет только на нагрузку источника т. к. мост сбалансирован, и ток через скользящий контакт регулятора баланса не течет. Поэтому замыкание и размыкание переключателя «Sw1», ничего не меняет. Это, кажется, разумным: пока регулятор баланса находится в среднем положении, сигнал через него не проходит. Следовательно, качество (или состояние) потенциометра регулятора баланса вообще не имеет значения. На практике баланс может не совсем соблюдаться, если дорожки регулятора баланса имеют неодинаковое сопротивление от центрального до крайних положений. Благодаря дополнительному резистору ‘R’, регулятор баланса работает очень плавно вблизи центрального положения и влияние на общий уровень громкости гораздо меньше, чем без него.
↑ Пример Б: R = 4,7 кОм (R = ~ 0,47 * VOL)
Регулятор баланса работает, не влияя на общий уровень громкости. Это удобно в эксплуатации, так как звуковая сцена может плавно смещаться влево или вправо без существенного изменения общего уровня громкости. Суммарное входное напряжение обоих каналов постоянно с точностью примерно (±0,2 дБ) при изменении положения регулятора баланса в пределах 80% (при этом регулировка баланса остается особенно плавной вблизи центрального положения). Я пришел к множителю 0,47 после моделирования на компьютере и проверил его, реализовав в моем предусилителе. Он работает, как и ожидалось (есть только незначительное увеличение общей громкости в крайнем правом и левом положениях). Я считаю, что регулятор баланса необходим, так как есть немало записей, которые страдают от тяжелого дисбаланса каналов. Перемещать же кресло или колонки неудобно. Перемещение звуковой сцены влево или вправо без изменения общей громкости, просто активируя ручку баланса, очень удобно и правильно.
Компромисс между критериями «золотого уха» и «максимальным удобством» можно найти, выбрав подходящее отношение «R/Vol» между 1,0 и 0,47. Вы можете добавить регуляторы баланса (например, R = VOL и BAL ~ 2*VOL)в усилители «пуристов» где он отсутствует. Критического изменения параметров не произойдет (конечно, будет некоторое уменьшение чувствительности примерно на 4…6 дБ, которое придется компенсировать регулятором громкости). Даже когда регулятор баланса установлен в крайних положениях общее изменение громкости составляет примерно 30%. Если обычный регулятор баланса в усилителе уже есть, его легко доработать… Надо просто припаять дополнительные резисторы к соответствующим контактам регуляторов громкости и баланса.
Как устроены регуляторы для наушников?
Регулятор громкости для наушников имеет только два конденсатора. Отличительной особенностью таких устройств можно назвать слабую пропускную способность. Сигнал во многих моделях идет долго. Связано это с тем, что транзисторы не рассчитаны на большую мощность. В некоторых моделях регуляторов устанавливаются резонаторы. Существуют они разных типов и имеют свои параметры. Наиболее часто можно встретить кварцевые резонаторы. Параметр сопротивления у них доходит до 4 Ом. В свою очередь ферритовые аналоги могут выдерживать только 2 Ом. Соединяется регулятор громкости для наушников с динамиком при помощи дросселя.
Пассивные регуляторы
Пассивный регулятор громкости отличается от прочих устройств тем, что он производится многоканальным. Сопротивление им в среднем выдерживается на уровне 3 Ом. Запирающие механизмы устанавливаются стандартные. В свою очередь контроллеры в них имеются исключительно цифровые. Благодаря этому синхронизировать стереозвук в приборе получается более точно. Таким образом, проблема с неравномерностью отпадает сама собой.
Резисторы во многих моделях имеются подстроечного типа. Отличительной особенностью профессиональных моделей считается наличие резонатора. Выходное напряжение данного элемента способно доходить до 8 В. Чаще всего в регуляторах они устанавливаются кварцевого типа. Конденсаторов в стандартной схеме имеется два. Микросхема в системе рассчитана на 8 бит.
Решение проблем со значком громкости
ШАГ 1 — проверка скрытых значков
Windows по умолчанию скрывает малоиспользуемые значки (хотя, обычно, значок громкоговорителя под это не подпадает ). Но тем не менее, сейчас столько всяких сборок Windows, различных твиков и пр., что проверить не помешает.
Для этого щелкните по стрелочке в трее и посмотрите, нет ли там сего знака (см. показательный пример ниже).
Значок звука оказывается был скрыт Windows, как неиспользуемый
ШАГ 2 — перезапуск проводника
При проблемах с проводником (а к нему относится все, что вы видите: рабочий стол, панель задач, значки и т.д.) появляются проблемы и с видимостью некоторых элементов, или их реагирования на нажатие мышкой. Перезапуск проводника — помогает решить сию проблему.
Как перезапустить проводник
: открыть диспетчер задач (сочетание кнопок Ctrl+Shift+Esc
), в процессах найти «проводник» (или explorer)
щелкнуть по нему правой кнопкой мышки и в меню выбрать «Перезапустить» (см. скрин ниже).
Альтернативный вариант перезапуска проводника: перезагрузить компьютер.
ШАГ 3 — проверка отображения значков в панели управления Windows
Многие значки (например, звук, питание, сеть, часы и др.) можно настраивать через . Делается это в разделе «Оформление и персонализация», в подразделе «Панель задач и навигация» (см. скриншот ниже).
Если у вас Windows 7 — то вы сразу же сможете приступить к настройке: что отображать, а что нет.
Если у вас Windows 10 — то появится еще одно окно, в котором вам нужно открыть одну из двух ссылок (см. ниже), например, «Включение и выключение системных значков».
Далее сможете вручную задать, что хотите видеть в панели задач, а что нет. Относительно значка громкости — включите и выключите его. Часто такой перезапуск помогает решить проблему его невидимости или не активности.
Включение и выключение системных значков Windows 10
ШАГ 4 — не скрыты ли значки в редакторе групповых политик
Для того, чтобы открыть редактор групповых политик, нажмите сочетание кнопок Win+R
, введите команду gpedit.msc
и нажмите Enter
.
Примечание
: редактор групповых политик не открывается в Windows 10 Home.
Затем ищите параметр (это для Windows 10), или «Скрыть значок регулятора громкости»
(это для Windows 7).
Открыв параметр, посмотрите не включен ли он! Если включен — поменяйте значение на «Не задан» (или «выключен»).
ШАГ 5 — редактирование системного реестра
Из-за «сбившихся» параметров в системном реестре, вполне может быть, что значок громкости пропадет (или не будет адекватно реагировать на ваши клики по нему). Чтобы вернуть все в первоначальное состояние — можно попробовать удалить пару параметров, которые отвечают за него и перегрузить ПК. Покажем на примере…
Сначала открываем редактор реестра:
- жмем Win+R
; - в окно выполнить вводим команду regedit
- жмем Enter.
В принципе, работа с реестром мало чем отличается от обычного проводника.
Нужно найти два параметра: PastIconsStream
и IconStreams
, и оба удалить!
Не забудьте после проведенной операции перезагрузить компьютер!
ШАГ 6 — проверка и настройка драйвера звука
При установке драйверов на звук — часто в комплекте к ним идет спец. центр управления звуком. Благодаря нему можно детально настроить звучание, выбрать тон, эхо, подстроить басы и т.д. Это я к тому, что работать с параметрами звука можно и без системного значка (и в большинстве случаев, так даже удобнее)!
Volume2 или .
Благодаря подобным программам можно вынести настройку звука в нужное вам место (например, на рабочий стол или заменить в трее стандартный значок) и не знать проблем с регулировкой громкости (все делать за 1-2 клика мышкой).
Я уж не говорю о том, что настройку звука можно забиндить на нужные вам клавиши. Внешний вид подобных значков — также весьма привлекателен, удовлетворит любого эстета (см. пример ниже).
На этом у меня всё. За дополнения — мерси…
Всем всего наилучшего!
Для изменения настройки звука существуют специальные регуляторы. По частотности их делят на активные, а также пассивные. Дополнительно разделение осуществляется по типу настройки. Самыми распространенными принято считать цифровые регуляторы. Создаются они под разные виды усилителей и имеют свою канальность. Чтобы понять принцип работы данных приборов, следует подробно разобраться в их устройстве.
Как устроен регулятор?
Важным элементом регулятора принято считать микросхемы. По своим параметрам они довольно сильно могут отличаться. Если рассматривать профессиональные модели, то там имеется до 100 различных контактов. Дополнительно в регуляторе наличествует контроллер, который занимается изменением предельной частоты прибора. С помехами в устройстве справляются конденсаторы. В простой модели их имеется до четырех. Обычно можно встретить в регуляторе керамические конденсаторы. Их частотность, как правило, указывается в маркировке.
В профессиональных моделях конденсаторы устанавливаются электролитические. Проводимость у них гораздо лучше, но стоят они дорого. Резисторов в стандартной схеме можно встретить до десяти единиц. Отличаются они между собой по предельному сопротивлению. Самые простые модели способны похвастаться параметром в 2 Ома. Резисторы с такими показателями встречаются довольно часто. Наконец, последним элементом регулятора следует назвать замыкающий механизм. Чаще всего он представлен в виде кнопки, однако есть модели со сложной системой индикации.
Тонкомпенсированный регулятор громкости на резисторе без дополнительных отводов
Такой регулятор можно собрать и на доступном каждому переменном резисторе без дополнительных отводов
. Схема такого регулятора приведена на следующем рисунке.
Использование резистора без отводов приводит к необходимости применения дополнительных деталей, однако это не сильно усложняет схему.
Обе приведенные схемы реализуют относительный подъем только в области низких звуковых частот. Относительный он потому, что отсутствие активных элементов не позволяет осуществить подъем, превышающий исходный сигнал, вместо этого осуществляется ослабление остальной части сигнала. Этот принцип заложен с основу любого пассивного фильтра звуковых частот.
Вторая схема была собранна и опробована. Элементы корректирующих цепей были напаяны непосредственно на выводы сдвоенного переменного резистора. Подобные пассивные регуляторы лучше устанавливать после предусилительного каскада и перед выходными каскадами.
Прослушивание в различных условиях продемонстрировали эффективность данной схемы, а ее применения оказалось достаточно для использования в домашних условиях на низких уровнях громкости. Тонкомпенсированный регулятор громкости позволяет сохранять тональный баланс записи без завала на низких частотах
Изготовление конструкции
Схема паяется на печатной плате из фольгированного стеклотекстолита. Плата не содержит перемычек, а два кажущихся разрыва в цепи массы будут местами пайки корпуса кнопок. Монтаж следует начать с припаивания интегральных микросхем, потому что это делается гораздо удобнее, когда нет выступающих элементов от другой стороны. Порядок пайки остальных элементов произвольный. Схему необходимо питать напряжением 5 В, желательно стабилизированным.
Полезное: Самодельная инфракрасная печь
Готовые для пайки платы
Определенным неудобством является программирование микроконтроллера, так как здесь не предусмотрено разъема программирования. Чтобы запрограммировать МК U1 — подпаяйте аккуратно к его выводам тонкие провода, которые затем будут подключены к программатору. Вывод VB (VBias) соединен с массой схемы, однако, если необходимо подключение этого входа к другой полярности, просто вырежьте фрагмент дорожки между выводами на плате. Когда потенциометр работает для регулировки громкости предусилителя и амплитуда сигнала, что на него подается не превышает 0,5 вольта, то выход VB следует поляризировать относительно отрицательного напряжения -5 В относительно массы. Это обеспечит правильную передачу аналогового сигнала.
кнопочный регулятор — потенциометр
Следует иметь в виду, что потенциометр имеет максимально допустимое напряжение, которое может присутствовать на любом из контактов (относительно GND) от -0.1 до +7 В для Vb = 0 и от -5 до +7 В для Vb = -5 В. При эксплуатации регулятора следует позаботиться о том, чтобы не превышать указанные допустимые границы напряжений. Когда вы питаете схему от отдельного БП, необходимо убедиться, что масса потенциометра (GND) и масса схемы назначения связаны между собой.
Фьюзы биты
На рисунке показаны настройки фузов для микроконтроллера ATTiny13
Что такое тонкомпенсированный регулятор громкости, примеры схем
Особенности нашего слуха таковы, что при снижении громкости мы все хуже и хуже начинаем слышать края звукового диапазона, т.е. высокие и низкие частоты. Если с высокими частотами все не так уж и плохо, то вот на низких частотах со снижением громкости требуется их довольно значительный подъем. Для решения данной проблемы применяется тонкомпенсированный регулятор громкости.
В доказательство сказанному на следующем рисунке представлены кривые равной громкости человеческого уха:
Упомянутый выше тонкомпенсированный регулятор громкости одновременно с изменением громкости изменяет и форму АЧХ так, чтобы тембр звука слабо зависел от уровня громкости. Для того, чтобы тонкомпенсация была верной, а изменение громкости равномерным, необходимо, чтобы определенное положение регулятора создавало в точке прослушивания соответствующий уровень громкости. Так, при установке регулятора громкости в положение максимальной громкости в точке прослушивания должен быть получен уровень громкости в 90 фон.
Простые тонкомпенсированные регуляторы громкости создают относительный подъем низших частот, который тем больше, чем меньше громкость. Существуют также и более сложные схемы, с и без использования активных элементов (транзисторы, ОУ), которые создают относительный подъем как низких, так и высоких звуковых частот.
↑ Примечания переводчика
Я не гарантирую абсолютную точность перевода. Практических опытов подтверждающих измерения автора я не делал. Вместе с тем, материал интересный и здесь собраны вместе технические решения, которые встречаются в разных конструкциях и статьях. Логарифмические потенциометры нужного размера и номинала найти весьма непросто, что и стало одной из причин данного перевода. Вместе с тем, большинство современных источников сигнала и самодельных предварительных усилителей имеет весьма низкое выходное сопротивление, что позволяет использовать описанный улучшенный регулятор громкости.
Спасибо за внимание!
↑ Об управлении
Для управления работой регулятора применён микроконтроллер ATMega8, но можно использовать и любой другой МК, отвечающий следующим требованиям: три свободных линии порта ввода/вывода (clock для тактирования регистра, data для передачи данных и storage для фиксации данных). Ниже приведена функция, посылающая данные на сдвиговый регистр. На авторство не претендую, т.к. данный код можно встретить на сайте AVR devices. Ничего сложного в ней нет – цикл по числу передаваемых бит, в котором накладывается маска, для выделения одного бита и соответствующий вывод в порт, а в конце дёргаем строб для фиксации данных в регистре. Функция отправки данных в регистр под спойлером. Показать / Скрыть текст
#define SH_CP PORTC.0 // строб данных #define DS PORTC.1 // данные #define ST_CP PORTC.2 // строб сохранения данных // вывод в сдвиговый регистр void putout (unsigned char temp) { unsigned char copy_temp; unsigned char counter; copy_temp = temp; for (counter = 0; counter < 8; counter++) { // цикл для 8 битов // Проверяем крайний левый бит если он равен 1 то записываем в линию данных 1 if (copy_temp & 0Ч80) {DS = 1;} else {DS = 0;} // иначе записываем 0 //Дёргаем ногой, чтоб пропихнуть бит в регистр SH_CP = 1; SH_CP = 0; copy_temp = copy_temp < < 1 ; // Сдвигаем все биты переменной темp влево на один бит } //Дёргаем ногой для сохранения данных в регистре. ST_CP = 1; ST_CP = 0; DS = 0; };
Стоит сказать, что данный аттенюатор работает в инверсном режиме относительно битов данных: при выводе в регистр значения «0» громкость будет максимальна, «63» – минимальна. Аттенюатор, при необходимости, легко масштабируется на некоторое число бит с увеличением количества ступеней регулирования.
На печатной плате младший разряд подведён к выводу Q1 регистра (а не Q0, как было бы логичнее), связано это с небольшими трудностями в разводке дорожек, так как Q0 находится на другой стороне микросхемы нежели выводы Q1-Q7. Имея это ввиду, следует сдвинуть выходной код в лево на один разряд («<< 1» в С или «shl 1» в Asm). В моей программе можно заметить сдвиг не в лево, а вправо связано это вот с чем: для управления у меня стоит механический энкодер и алгоритм его обсчёта изменяет переменную-счётчик на 4 за один щелчок, то есть изначально переменная громкости считается со сдвигом влево на 2 разряда.
Профессиональные модели
Профессиональные регуляторы громкости звука микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется подстроечный резистор. Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается ферритовое кольцо.
Вместо заключения…
Хотелось бы добавить, что бесконечные споры, ведущиеся на аудиофильских форумах о правильности/неправильности применения тонкорректирующих цепей зачастую идут в разрез с общей идеологией Hi-End, сутью которого прежде всего является максимально приближенное к реальности музыкальное воспроизведение, при котором исчезают улавливаемые на слух отклонения от оригинала.
Для правильного восприятия музыкальной программы необходимо создавать при воспроизведении, которому ваши соседи явно не будут рады. Так что тонкомпенсированный регулятор громкости можно воспринимать как удачный компромисс сохранения правильного тембрального окраса музыки в домашних условиях.
Самостоятельная сборка регулятора
Для того чтобы собрать регулятор громкости своими руками для усилителя средней мощности, понадобится микросхема как минимум на 8 бит. Транзисторы для нее лучше всего использовать биполярные. Обычно они в магазине представлены с маркировкой «2НН». Показатель сопротивления у них в среднем колеблется в районе 3 Ом. Контроллеры в основном побираются линейные. Они позволяют довольно плавно изменять предельную частоту. При этом амплитуда помех будет зависеть исключительно от конденсаторов.
Для обычного регулятора будет достаточно установить их три штуки. Светодиоды могут использоваться только на пару с выпрямителями. В некоторых случаях, для того чтобы сделать регулятор громкости своими руками, дополнительно в начале цепи советуют использовать стабилитрон. Данный элемент значительно повышает работоспособность резисторов и регулятора в целом.
Регулятор громкости с тонкомпенсацией
При небольших уровнях громкости звучание звукоусилительной аппаратуры невысокого класса не обеспечивает, как правило, качественного воспроизведения. Это связано с тем, что при небольшой громкости ухо человека становится менее чувствительным к частотам нижнего и верхнего спектра. Для устранения этого недостатка в высококачественной аппаратуре предусмотрены различные схемы компенсации амплитудно-частотной характеристики (АЧХ) при малых громкостях звучания, то есть верхние и нижние частоты дополнительно усиливаются, в результате АЧХ выравнивается и качество звучания не изменяется на слух при любом уровне громкости. Самым простым способом можно достичь этого эффекта, применив регуляторы громкости с тонкомпенсацией. Схемы довольно просты и не требуют применения дефицитных деталей и какой-либо настройки.
Профессиональные модели
Профессиональные регуляторы громкости звука микросхемы имеют многоканальные. Учитывая это, для нормальной работы им требуется подстроечный резистор. Находится он, как правило, рядом с конденсатором. Рассчитана система на нагрузку 8 бит. Замыкающий механизм в устройстве установлен обычный. Коэффициент шума прибора максимум достигает 55 дБ. Показатель нелинейного искажения в некоторых случаях способен превышать 0.001 %.
Рабочая частота в среднем колеблется в районе 2000 Гц. С равномерностью такие схемы проблемы испытывают редко. Выходное напряжение прибора равняется 0.5 В. Резисторная развязка сопротивление максимум выдерживает 3 Ом. Преобразователи в системе предусмотрены, а крепятся они к плате только через дроссель. Конденсаторов в стандартной модели имеется около трех единиц. Их вполне достаточно, чтобы справляться с различными сигналами. Возле гнезда устройства обязательно располагается ферритовое кольцо.
Классификация по условиям эксплуатации
По особенностям применения и использования виды резисторов делятся на группы.
Постоянные
Сопротивление неизменное с допустимой нормированной погрешностью и соответствует норме. На электрической схеме изображаются прямоугольником со сторонами 10х4 мм. От центра узкой стороны изображаются линии выводов. Рядом с изображением ставят литеру «R» с порядковым номером корпуса по схеме. Тут же проставляют величину номинала.
Внутрь прямоугольника вписывается рассеивание. В импортной технической документации часто изображается в виде зигзагообразной линии соединяющей выводы.
Переменные и подстроечные
Компоненты переменного потенциометра оснащены тремя и более выводами, и механизмом перемещения ползунка – токосъемника. Диапазон изменения простирается от нуля до максимума, ограниченного установленным номиналом.
Изменение характеристик оборудования в процессе эксплуатации, выглядящее, например, как настройка тюнера, регулировка уровня громкости или освещения, выполняется переменным компонентом.
Механизм перемещения ползунка завершается ручкой, позволяющей оперативно проводить регулировку. Если настройка выполняется при наладке и ежедневно меняться не должна, применяются подстроечники. Положение токосъемника в них устанавливается отверткой.
Нелинейные
Устройства автоматики и электронной защиты активно пользуются полупроводниковыми нелинейными приборами, проводимость которых изменяется автоматически при колебаниях внешних факторов окружающей среды. Отрицательный температурный коэффициент у термисторов увеличивает проводимость при повышении температуры и уменьшает при понижении.
Прибор с положительным ТКС называются позистором. У фоторезистора проводимость полупроводникового слоя возрастает при увеличении освещенности в видимом, инфракрасном или ультрафиолетовом спектре.
Варисторы способны увеличить проводимость при возрастании приложенного к нему напряжения
Магниторезисторы реагируют на магнитное поле, а тензисторы фиксируют приложенное к ним механическое усилие.
Схемы индикации.
Блок индикации на основе микросхемы К155РЕ3:
увеличение по клику
Непосредственно счётный узел построен на счётчиках IC1 и IC2. Переключателями S1-S5 задаётся первоначальный уровень громкости (в двоичном коде!!!), который устанавливается при включении устройства. Цепь R6, C1 обеспечивает загрузку выставленного значения.
На микросхемах IC6, IC7 формируются сигналы остановки счёта при достижении крайних значений : 0 и 32 (64дБ).
Инверторы IC8 включены для устранения щелчков при регулировании громкости. Буферные транзисторы VT1-VT5 взяты с большим запасом практически под любое реле. Тип и напряжение питания реле не указываю — на Ваш выбор.
Микросхема IC3 используется как преобразователь двоичного кода в двоично-десятичный. Преобразование происходит «один в один», то есть индикация осуществляется от 0 до 32 (напоминаю, что шаг регулировки 2 дБ и соответственно глубина регулировки будет 64 дБ.) При желании сделать индикацию в децибелах, достаточно изменить прошивку IC3. (Опять напоминаю, что микросхемы К155РЕ3 однократно программируемые. Таким образом для смены прошивки придётся использовать новую микросхему). «Прошивка» очевидна, поэтому не приводится.
IC4, IC5 управляют семисегментными индикаторами с общим анодом. При использовании индикаторов с общим катодом IC4 и IC5 необходимо заменить на К514ИД1, а резисторы R7-R19 исключить.
Блок индикации на основе микросхемы К155ПР7:
увеличение по клику
Здесь всё, как в предыдущей схеме, только вместо микросхемы памяти используется специализированная микросхема для преобразования двоичного кода в двоично-десятичный. Преобразование происходит «один в один», то есть индикация осуществляется от 0 до 32 (напоминаю, что шаг регулировки 2 дБ и соответственно глубина регулировки будет 64 дБ.)
Блок индикации без микросхем памяти. Учитывая, что вышеуказанные микросхемы на сегодняшний день являются довольно труднодоставаемыми, была разработана схема индикации на обычных счётчиках:
увеличение по клику
Подробнее о схеме: непосредственно счётный узел построен на счётчиках IC1 и IC2. Для формирования двоично-десятичного кода используются IC3, IC4. Переключателями S1-S5 (в двоичном коде!!!) и S6-S10 (в двоично-десятичном коде!!!) задаётся первоначальный уровень громкости, который устанавливается при включении устройства. Цепь R6, C1 обеспечивает загрузку выставленных значений.
На микросхемах IC7, IC9 формируются сигналы остановки счёта при достижении крайних значений : 0 и 32 (64дБ).
Инверторы IC8 включены для устранения щелчков при регулировании громкости. Буферные транзисторы VT1-VT5 взяты с большим запасом практически под любое реле. Тип и напряжение питания реле не указываю — на Ваш выбор.
IC5, IC6 управляют семисегментными индикаторами с общим анодом. При использовании индикаторов с общим катодом IC5 и IC6 необходимо заменить на К514ИД1, а резисторы R7-R19 исключить.
Недостатки схемы: 1. необходимость двойного задания начального уровня громкость — S1-S5 в двоичном коде и S6-S10 тоже самое, но в двоично-десятичном коде.(если использовать общие группы переключателей, что часто встречается в Интернете, будет несоответствие между показаниями индикатора и реальным уровнем громкости).
2. из-за помех по цепям питания возможно несоответствие между показаниями индикатора и реальным уровнем громкости. Для избежания этого необходимо обязательно на каждый счетчик установить по цепям питания шунтирующие конденсаторы, а на выключателе питания использовать искрогасящие цепи. При такой организации схема эксплуатируется уже в течении 2 лет и показала надёжную работу!
Продолжение следует…