Способы торможения асинхронного двигателя

Рекуперация и дать, и взять журнал За рулем

16 февраля 2011 годаЕще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге. Например, троллейбусы, трамваи, электропоезда передают вырабатываемое при торможении в контактную сеть электричество, которое потом можно повторно использовать.

Еще до появления легковых гибридов рекуперативное торможение широко применяли в многотонной колесной и рельсовой технике, работающей на электрической тяге. Например, троллейбусы, трамваи, электропоезда передают вырабатываемое при торможении в контактную сеть электричество, которое потом можно повторно использовать.

Термин «рекуперация» произошел от латинского recuperatio (обратное получение) и означает возвращение некоего количества вещества или энергии для последующего использования в том же технологическом процессе.

Например, существует рекуперация тепла в системах вентиляции, когда удаляемый из помещения воздух подогревает поток, нагнетаемый внутрь. Или рекуперация драгоценных камней или металлов, которые извлекают из отработавших ресурс инструментов, восстанавливают и вновь пускают в производство. В транспортных же машинах, в том числе в автомобилях, часто встречается рекуперация электрической энергии.

Как оно работает

Самый простой пример конструкции, позволяющей возвращать энергию, — умный генератор. При интенсивном разгоне он отключается, чтобы разгрузить двигатель, — следовательно, уменьшается расход топлива и количество вредных выбросов. Потребители электричества в это время вытягивают энергию из аккумулятора. Водитель убирает ногу с педали газа — генератор вновь подключается и пополняет заряд батареи, а автомобиль экономит до 3% горючего.

Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.Направление потоков энергии при рекуперации. При разгоне электричество поступает из батареи в электродвигатель, где преобразуется в механическую энергию для вращения колес.

Еще больше пользы приносит рекуперация в гибридных и электрических моделях. Тут электромотор выполняет две функции — движущей силы и генератора. Разгоняя автомобиль, он потребляет электричество, а при замедлении преобразует механическую энергию в электрическую.

Стоит отпустить педаль акселератора, как электроны начинают двигаться в обратную сторону — и батарея заряжается.

При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.При торможении колеса раскручивают электромотор, тот переходит в режим генератора и отдает электроэнергию обратно в батарею.

Бессменная гидравлика, приводящая в действие колесные механизмы, работает обычно при интенсивном замедлении, а при плавном (до 0,2–0,3g) используется так называемое рекуперативное торможение. Электродвигатель переходит в режим генератора, обмотки статора отдают ток в аккумуляторную батарею, что создает тормозной момент, заставляющий автомобиль останавливаться.

Чем сильнее водитель давит на тормоз, тем выше противодействующий момент — и тем интенсивнее автомобиль замедляется, а электромотор заряжает батареи. Таким образом, рекуперация позволяет не только экономить топливо (примерно 5–10%), но и в полтора-два раза реже менять тормозные колодки.

Повышенная энергоотдача в батарею происходит и в случае, если селектор режимов движения переведен в положение B (Brake). При этом автомобиль лучше тормозит двигателем, поэтому на горной дороге быстрее пополнится запас электричества в аккумуляторах, а тормозные диски и колодки не перегреются.

Использование

Принцип рекуперации пытаются использовать в автомобилях Формулы 1: редкий случай, когда технологию опробовали на серийных машинах, а потом предложили королеве автоспорта.

Правда, конструкции так называемого KERS (Kinetic Energy Recovery System — система возврата кинетической энергии) здесь более изощренные. Большинство команд используют электрическую рекуперацию.

Обкатав KERS на формулах, Ferrari примерила систему рекуперации на дорожный автомобиль.

https://youtube.com/watch?v=a6d-53egK1k

На базе купе 599 GTB Fiorano появился первый в истории Ferrari гибрид 599 GTB HY-KERS. Шестилитровому бензиновому двигателю на разгоне помогает 74-киловаттный электромотор, вырабатывающий энергию при торможении и позволяющий проехать на электротяге до 5 км.

Рекуперация: и дать, и взятьРекуперация: и дать, и взятьОшибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

Торможение самовозбуждением

Схема торможения самовозбуждением

Этот вариант реализуется за счет подключения обмоток статора к параллельной конденсаторной батарее или мосту (расчет емкости придется вести). Когда двигатель отключается от сети и должен наступить режим выбега, угасающее магнитное поле начинает питать конденсаторы, а через них возвращается обратно в обмотку, создавая тормозной момент.

Как можно видеть, на практике используется целая гамма специфических режимов работы асинхронных двигателей, которыми можно добиться быстрой и точной его остановки. При частых пусках и остановках динамическое, рекуперативное, реверсное (на пускателях) или конденсаторное торможение (через расчет моста или батареи) могут повысить эффективность работ оборудования и снизить потери времени.

Источник



Конденсаторное торможение электродвигателей

Конденсаторное торможение асинхронных двигателей малой мощности и комбинированные способы торможения с его использованием в последние годы получили значительное распространение. С точки зрения быстроты остановки, сокращения тормозного пути и повышения точности конденсаторное торможение часто дает лучшие, результаты, чем другие способы торможения электродвигателей.

Конденсаторное торможение основано на использовании явления самовозбуждения асинхронной машины, или, что более правильно, емкостного возбуждения асинхронной машины, поскольку необходимая для возбуждения генераторного режима реактивная энергия доставляется подключенными к статорной обмотке конденсаторами. В этом режиме машина работает с отрицательным по отношению к вращающемуся магнитному полю, созданному возбужденными в статорной обмотке свободными токами, скольжением, развивая на валу тормозной момент. В отличие от динамического и рекуперативного оно не требует потребления возбуждающей энергии из сети.

Принципиальная электрическая схема агрегата АД-20М (см. рис.1).

В схеме синхронный генератор со статической системой возбуждения показан в свернутом виде. Она включает в себя бесконтактные и релейно-контактные элементы. Вращение вала электродвигателя передается через фрикционную муфту на червяк, червячное колесо редуктора, ходовой винт, при этом ходовая гайка движется поступательно. Электрические блокировки для предотвращения одновременного включения двух контакторов осуществляются с помощью размыкающих контактов КM1 и КM2 рисунок 6, б.

По импульсу от зарядного генератора замыкается цепь реле удавшегося запуска 1РИ. Управление двигателями осуществляется реверсивным магнитным пускателем.

Для этого в цепь управления магнитного пускателя КМ2, осуществляющего пуск и остановку электродвигателя М2, включен замыкающий вспомогательный контакт КМ1, связанный с пускателем КМ1. Схема управления АД, обеспечивающая прямой пуск и динамическое торможение в функции времени Пуск двигателя осуществляется нажатием кнопки SВ1 рис. Предполагается, что при включении рычажок РБ перемещается вправо, а при отключении — влево. Защита силовых цепей двигателя от токов короткого замыкания осуществляется с помощью реле максимального тока FI, F2, F3; защита от перегрузок — электротепловыми реле F4 1—2 , нагревательные элементы которых включены через трансформаторы тока TT1, ТТ2.

Реостатный пуск асинхронного двигателя с кз ротором.

Его контакт замкнется в цепи контактора ВК3. Если не работает охлаждающий или рассольный насос, то пуск компрессора невозможен контакт Р или Р1 разомкнут в цепи контактора пуска компрессора ВК3.

Ее роль выполняет массивная бочка ротора. Схемы электрооборудования дизелей В схемах электрооборудования дизелей отсутствует система зажигания, поэтому схема получается несколько проще. По фазам А и В в обмотки статора двигателя протекает ток однополупериодного выпрямления, что обеспечивает эффективное динамическое торможение.

Проекты по теме:

В случае задержки в выставлении счета и коммерческого предложения, а также при возникновении претензий к работе отдела продаж, обращаться к старшему менеджеру. В магнитную станцию входит вся электроаппаратура схемы, кроме резисторов R1—R4. Туда же поступает топливо, прошедшее в полость пружины форсунки через зазор между иглой и распылителем.

Фотографии готовых изделий Главный офис и склад компании г. Схема управления АД с кз предусматривает несколько защит: от КЗ — посредством автоматического выключателя QF и плавкими предохранителями FU; от перегрузок — посредством теплореле КК при перегреве данные устройства отсоединяют контактор КМ, прекращая работу движка ; нулевая защита — посредством магнитного пускателя КМ при низком напряжении или его полном отсутствии контактор КМ оказывается незапитанным, размыкается и электродвигатель выключается. Схема управления двухскоростным асинхронным электродвигателем с короткозамкнутым ротором. Подготовка к работе Заправка топливом Проверить наличие топлива в топливном баке. Сочи — Тел. Схема управления двигателем с двух и трех мест

Советуем изучить — Виды преобразования электрической энергии

Принцип торможения противотоком

Мотор отключается от электросети, и пока ротор продолжает вращаться, вновь подключается противофазой. Такая система создаёт эффективный момент блокировки, обычно превышающий пусковой момент.

Между тем, этот эффективный момент торможения должен быть быстро нивелирован, чтобы двигатель после остановки не вращался в противоположном направлении.

Несколько устройств контроля и автоматики привлекаются для обеспечения замедления вращения вала электродвигателя до его полной остановки:

  • датчики остановки фрикциона,
  • датчики центробежного останова,
  • хронометрические приборы,
  • реле частоты,
  • реле напряжения ротора (для двигателей с фазным ротором) и т. д.

Торможение двигателя с короткозамкнутым ротором

Прежде чем выбирать систему противотока для асинхронного мотора с КЗ ротором, важно обеспечить устойчивость двигателя к противоточному способу с учётом требуемой нагрузки. Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора

Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора.

Тепловое напряжение на противотоке в три раза больше, чем при наборе скорости вращения. Здесь пики тока и крутящего момента заметно выше, если сравнивать с моментом пуска.

Динамическое торможение асинхронного двигателя

Динамическое торможение АД (торможение постоянным током) осуществляется путем подключения к двум любым обмоткам статора источника постоянного тока. При этом с помощью группы контактов К1 асинхронный двигатель сначала отключают от питания трехфазным переменным током, и только после этого, замыкают группу контактов К2 и подают постоянный ток. Величину постоянного тока регулируют сопротивлением rт (рисунок 1).

Рисунок 1 — Схема динамического торможения асинхронного двигателя

Само динамическое торможение асинхронного двигателя сопровождается следующими процессами и изменениями:

При отключении переменного тока, вращающееся магнитное поле перестает существовать. Далее подключают источник постоянного тока, который создает постоянное магнитное поле. Ротор по инерции продолжает крутиться теперь уже в постоянном магнитном поле, в обмотке ротора наводится ЭДС, ее частота прямо пропорциональна скорости вращения вала. Появление тока в обмотке ротора вызвано наличием вышеупомянутой ЭДС. Ток создает магнитный поток, который неподвижнен относительно статора. Взаимодействие результирующего магнитного поля АД и тока ротора создает тормозной момент. При этом асинхронный двигатель становится генератором; преобразовует кинетическую энергию вращающегося вала в электрическую, которая на обмотке ротора рассеивается в виде тепловой энергии. При переходе в режим динамического торможения частота и угловая скорость равны: f=0 w=0. Кривая динамического торможения должна проходить через начало координат и торможение происходит до полной остановки (рисунок 2).

Эффективность динамического торможения зависит от параметров:

— Величина постоянного тока, который протекает по статорной обмотке двигателя (чем больше ток, тем больше тормозной эффект);

— Величина сопротивления, введенного в цепь ротора. Эффективность торможения повышается путем комбинирования динамического торможения и торможения с введением сопротивлений в обмотку ротора (рисунок 2):

Рисунок 2 – Механическая характеристика динамического торможения асинхронного двигателя

Чем больше сопротивление введено в цепь ротора, тем выше эффективность торможения, то есть на кривой а1 изображена самая быстрая остановка двигателя при наибольшем сопротивлении — R1>R2>R3.

— Схема соединения обмоток статора.

Величина магнитодвижущей силы (F) напрямую связана с понятием эффективность торможения, чем больше значение силы – тем эффективней происходит торможение,

F=I·W.

На рисунках, которые изображены ниже, стрелками показаны направления протекания постоянного тока по обмоткам, IW– ампер витки (так как количество витков в обмотках одинаково, то зависит значение только от величины тока). Векторные диаграммы иллюстрируют направления магнитодвижущих сил (F), сложив по правилам суммирования векторы, мы получим результирующий вектор, который обозначен жирной стрелкой.

Обмотка статора может быть соединена:

а) Схема соединения обмотки статора в звезду:

б) Схема соединения статорной обмотки в треугольник:

в) Соединение обмотки статора в звезду с закороченными двумя фазами:

г) Подключение звезда с разорванным нулем:

д) Подключение треугольник с закороченными фазами:

Схемы соединения а) и б) имеют наибольшее распространение, потому что не требуют переключения при торможении самих обмоток.

Необходимо подметить, что напряжение (U) источника постоянного тока должно быть малой величиной, потому что сопротивление обмотки статора мало. Ток выбирается из условия необходимого начального тормозного момента, обычно выбирают ~2Mном.

Преимущества режима динамического торможения:

— Относительная простота осуществления способа;

— Возможность торможения до полной остановки вала ротора;

— Высокая эффективность торможения, особенно при использовании комбинированного метода.

Основным недостатком является необходимость наличия источника постоянного тока.

Расчет величины тормозного сопротивления:

RT = 2·rф.ст + rт,

rт=RT — 2rф.ст,

где RT — полное сопротивление цепи источника постоянного тока,

rф.ст — сопротивление фазы статора.

Вышеприведенные формулы являются частным случаем (для понимания отношений величин сопротивления), когда постоянный ток протекает только по двум обмоткам статора, если же ток будет протекать по трем обмоткам, то коэффициент (количество фаз) перед сопротивлением фазы статора нужно соответственно изменить.

Советую вам прочесть статью про торможение противовключением, в которой подробно расписан данный вид остановки двигателя.

Недостаточно прав для комментирования

Трёхфазные асинхронные двигатели: методы торможения хода

Главная страница » Трёхфазные асинхронные двигатели: методы торможения хода

Значительное число приводных систем используются при естественном замедлении работы двигателей в процессе остановки. Время, затрачиваемое на остановку ротора, измеряется исключительно инерционным моментом и моментом сопротивления вращению. Между тем нередко эксплуатация систем требует сокращать время остановки вала мотора и в этом случае электрическое торможение хода электродвигателя видится простым и эффективным решением. По сравнению устройствами, где применяются механический или гидравлический способы, электрическое торможение двигателей имеет явные преимущества в плане устойчивости действия и экономичности применения.

Торможение двигателей электронным и сверхсинхронным способом

Эффект электронного торможения достигается относительно просто с помощью регулятора скорости, оснащенного тормозным резистором. Асинхронный двигатель действует как генератор. Механическая энергия рассеивается на ограничительном резисторе без увеличения потерь в самом двигателе.

Эффект торможения проявляется, когда двигатель достигает верхней точки синхронной скорости с переходом на более высокие значения. Здесь фактически инициируется режим асинхронного генератора и развивается тормозной момент. Возникающие при этом потери энергии восстанавливаются электросетью.

Подобный режим работы проявляется на двигателях подъёмников при спуске груза с номинальной скоростью. Тормозной момент полностью уравновешивается крутящим моментом от нагрузки.

За счёт этого равновесия удаётся тормозить не ослаблением скорости, а выводом двигателя в режим работы на постоянной скорости.

Для варианта эксплуатации моторов с фазным ротором, все или часть резисторов ротора должны быть накоротко замкнутыми, чтобы двигатель не развивал движение значительно выше номинальной скорости.

Сверхсинхронная система функционально видится идеальной для ограничения движения под нагрузкой, потому что:

  1. Скорость остаётся стабильной и практически не зависит от вращающего момента,
  2. Энергия восстанавливается и возобновляется в сети.

Тем не менее, сверхсинхронное торможение электродвигателей поддерживает только одну скорость вращения, как правило, номинальное вращение. На частотно-регулируемых двигателях используются сверхсинхронные схемы, благодаря которым изменяется скорость вращения вала от верхнего значения к нижнему значению.

Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает эту систему при понижении частоты.

Другие тормозные системы

Редко, но всё-таки встречаются системы однофазного торможения. Эта методика включает питание двигателя между двумя фазами сети и подключает незанятый терминал к одному из двух других сетевых подключений.

Вариант остановки простым реверсивным переключением — реверс поля вращения, образованного обмотками статора

Тормозной момент ограничивается 1/3 максимального крутящего момента двигателя. Этой системой невозможно остановить мотор на полной нагрузке.

Поэтому такая схема традиционно дополняется противоточным методом. Вариант однофазной блокировки характеризуется значительным дисбалансом и высокими потерями.

Также применяется торможение электродвигателей ослаблением вихревых токов. Здесь работает принцип, аналогичный тому, что используется на промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы).

Механическая энергия рассеивается в редукторе скорости. Замедление и остановка электродвигателя контролируется простым возбуждением обмотки. Выраженный недостаток этого метода — значительное увеличение инерции.

Видео настройки преобразователя частоты на торможение

Ниже представлен видеоролик, демонстрирующий наличие дефектов и ошибки частотного преобразователя в момент функции торможения двигателя. Здесь же отмечается — как устранить нарушение работы электродвигателя и, соответственно, ошибку ПЧ:

По материалам: Schneider-electric

Конденсаторное торможение

Конденсаторное торможение особенно эффективно для прбд-варительного снижения скорости перед реверсом или остановкой двигателя и в случаях, когда не требуется полной его остановки. В случаях, когда требуется точная остановка двигателя, наиболее целесообразно применять, например, сочетание схемы конденсаторного торможения со схемой торможения постоянным током.

Конденсаторное торможение при малых скоростях еще менее эффективно, чем динамическое, так как ЭДС в роторе снижается не только за счет уменьшения скорости, но и за счет затухания поля статора. Однако такой метод торможения не требует источника постоянного напряжения, а в нормальном режиме работы конденсаторы способствуют повышению coscp сети. В начальный момент разрядки конденсаторов получается интенсивное торможение, поэтому такой способ широко используют на практике.

Осциллограмма конденсаторного торможения двигателя АО42 — 6.| Кривые эффективности конденсаторного торможения двигателей единой серии.

Конденсаторное торможение прекращается при некоторой критической скорости вращения двигателя, соответствующей собственной частоте возникающих в статоре свободных токов.

Конденсаторное торможение осуществляется очень просто, не требует дополнительных коммутационных аппаратов и обладает высокой надежностью. Конденсаторы могут быть установлены в любом удобном месте и не нуждаются в систематическом надзоре.

Механические характеристики трехфазного асинхронного электродвигателя при динамическом торможении.

Достоинством конденсаторного торможения является отсутствие потребности во внешнем источнике электрической энергии, а недостатком — необходимость иметь конденсаторную батарею значительной емкости, которая может обеспечить тормозной эффект при пониженной скорости ротора.

Режим конденсаторного торможения при закрытых тиристорах проходит так же, как и при контактном управлении. В противоположность этому режиму режим динамического торможения, даже если он начинается после полного окончания конденсаторного, отличается тем, что с началом непроводящего полупериода ток продолжает проходить через тиристор из-за разряда подключенных к обмоткам АД конденсаторов. Малое сопротивление цепи определяет колебательный характер разряда с частотой и амплитудой тока, зависящими от емкости конденсаторов и скорости АД. Увеличение переменной составляющей тока приводит к образованию двигательной составляющей момента, что определяет знакопеременный характер развиваемого АД момента на последнем участке торможения. Знакопеременный момент уменьшает эффективность торможения и обусловливает такой же знакопеременный характер изменения ускорения в процессе торможения малоинерционных приводов.

Механические ха -. рактерисгики трехфазного асинхронного электродвига теля при динамическом торможении.

Достоинством конденсаторного торможения является отсутствие потребности во внешнем источнике электрической энергии, а недостатком — необходимость иметь конденсаторную батарею значительной емкости, которая может обеспечить тормозной эффект при пониженной скорости ротора.

При конденсаторном торможении асинхронная машина работает с отрицательным скольжением по отношению к чатоте f возбужденного в статоре свободного тока.

При конденсаторном торможении к статору асинхронного двигателя постоянно ( глухое подключение) или с помощью дополнительного контактора подключаются конденсаторы, будучи при этом соединенными в схему треугольника или звезды. Интенсивность торможения определяется емкостью используемых конденсаторов.

Следовательно, конденсаторное торможение по существу может быть осуществлено только до определенной скорости.

Комбинированное торможение хронного двигателя.

Если после конденсаторного торможения статор двигателя замкнуть накоротко, то в обмотках статора появляются токи, созданные затухающим полем, и происходит кратковременный процесс динамического торможения. Такое двухступенчатое торможение ( предложено Л. П. Петровым, Одесский политехнический институт) применяют для двигателей небольшой мощности.

Определяем ток двигателя по мощности

Иногда возникает ситуация, когда известна мощность двигателя и требуется узнать его ток, чтобы выбрать правильную защиту. Можно обратиться к технической документации на двигатель, но это не всегда возможно.

Оценить номинальный ток двигателя можно простым способом — нужно мощность в киловаттах умножить на 2. Например, у двигателя мощностью 4 кВт номинальный ток будет равен примерно 8 А.

В силу того, что у маломощных двигателей низкий КПД, при мощности менее 1,5 кВт ток будет выше, и множитель нужно выбирать около 2,2. Для двигателей мощностью более 15 кВт множитель будет 1,9, более 55 кВт — 1,8.

Источник



Рекуперативное (генераторное) торможение

Рекуперативное торможение применяется в основном в качестве подтормаживания перед основным торможением, либо при спуске груза, например в лифтах.

Чтобы наступило рекуперативное торможение, нужно чтобы частота вращения ротора превысила синхронную частоту вращения. В таком случае двигатель начнет отдавать энергию в сеть, то есть станет асинхронным генератором. При этом электромагнитный момент двигателя становится отрицательным, и оказывает тормозной эффект.

Добиться генераторного торможения можно несколькими способами. Например, в двухскоростных двигателях, при переключении с большей скорости на меньшую. При этом ротор вращается по инерции с частотой, выше, чем новая синхронная частота. Возникнет тормозной момент, который уменьшит скорость до новой номинальной.

Допустим, что в начальный момент времени наш двигатель работал на характеристике 1 в точке A, после переключения скорости на более низкую, он перешел на характеристику 2 в точку B, а затем под действием тормозного момента достиг точки С, с меньшей частотой оборотов.

Генераторное торможение можно осуществить, если уменьшать частоту питания двигателя. Это возможно, если двигатель питается от тиристорного преобразователя частоты. При уменьшении частоты напряжения, уменьшается синхронная частота вращения. Частота вращения ротора, который вращается по инерции, снова окажется выше, возникнет тормозной момент, который будет снижать частоту вращения ротора. Таким образом, двигатель можно довести до полной остановки.

Асинхронный двигатель и его работа

Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Классическое динамическое торможение

Эффективность такого режима работы зависит от расчета и значения следующих параметров:

  1. Величина тока, который подается через параллельную цепь на обмотки статора. Чем выше этот показатель, тем больше момент торможения,
  2. Величина сопротивления, которое вводится в цепь ротора. Чем выше по расчету сопротивление, тем быстрее тормозится двигатель,
  3. Величина магнитной движущей силы (МДС). Иногда ее называют ампер витками, поскольку расчет ведется по формуле F = I×W, где I – величина тока, а W – количество витков.

Обмотка статора при этом может подключаться как минимум пятью разными способами:

  1. Треугольником,
  2. Треугольником с закороченными фазами,
  3. Звездой,
  4. Звездой с закороченным нулем,
  5. Звездой с закороченными двумя фазами.

В каждом случае на основании векторной диаграммы ведется расчет МДС, тормозного сопротивления и напряжения цепи.