Оглавление
- Трехфазный стержневой трансформатор
- Назначение и виды
- Устройство трехфазного силового трансформатора
- Группы соединений обмоток
- Соединение треугольником
- Схемы соединений обмоток треугольник и звезда для чайников.
- Как рассчитать силовой трансформатор по формулам за 5 этапов
- Назначение и принцип действия трансформатора
- Устройство трансформатора
- Что происходит при перекосе фаз?
Трехфазный стержневой трансформатор
Однофазный бронепой трансформатор с четырьмя симметричными ярмами и концентрическими обмотками. |
Трехфазный стержневой трансформатор имеет принципиальную форму сцепления обмоточных и магнитных звеньев, показанную на рис. 12 — 2, е, представляющую собой дальнейшее развитие трехзвенного сцепления двух магнитных звеньев и одного обмоточного по рис. 12 — 2, в. В этом случае одно обмоточное звено расщепляется на три отдельные обмоточные звена для всех трех фаз, что дает пятизвенное сцепление трех звеньев обмоток и двух магнитных звеньев.
Для трехфазного стержневого трансформатора, имею-щего схему соединения звезда — звезда с нулем ( рис. 16 — 1 а), для подготовки схемы нулевой последовательности необходимо замкнуть накоротко три фазных вывода обмотки ВН или НН и подать напряжение между замкнутыми накоротко выводами и нулевым; вторая обмотка остается открытой.
В трехфазном стержневом трансформаторе, в котором нет нулевого магнитопровода в виде боковых стержней, третьи гармонические потоков фаз ( рис. 4 — 13, б) замыкаются через стенки бака, встречая на своем пути большие сопротивления немагнитных промежутков. Поэтому магнитное сопротивление для третьих гармонических потоков получается в десятки раз большим, чем для первых гармонических, которые замыкаются в пределах магнитопровода.
В трехфазном стержневом трансформаторе, в котором нет нулевого магнитопроводг в: зиде боковых стержней, третьи гармонические потоков фаз ( рис. 4 — 13, б) замыкаются через стенки бака, встречая на своем пути большие сопротивления немагнитных промежутков. Поэтому магнитное сопротивление для третьих гармонических потоков получается в десятки раз большим, чем для первых гармонических, которые замыкаются в пределах магнитопровода.
В трехфазном стержневом трансформаторе, в котором нет нулевого магнитопровода в виде боковых стержней, третьи гармонические потоков фаз ( рис. 4 — 13, б) замыкаются через стенки бака, встречая на своем пути большие сопротивления немагнитных промежутков. Поэтому магнитное сопротивление для третьих гармонических потоков получается в десятки раз большим, чем для первых гармонических, которые замыкаются в пределах магнитопровода.
Трехфазный трансформатор с бронестержневой магнитной системой.| Укладка листов в слоях шихтованных магнитопроводов. |
В трехфазном стержневом трансформаторе обмотки каждой из фаз размещаются на своем стержне ( см. рис. 1 — 2); стержни вместе с ярмами образуют замкнутую магнитную систему.
Как устроен трехфазный стержневой трансформатор.
Образование магнитопровода трехфазного стержневого трансформатора показано на рис. 13, а. Три одинаковых однофазных трансформатора выполнены так, что их первичные и вторичные обмотки размещены на одном стержне магнитопровода, а другой стержень магнитопровода каждого трансформатора не имеет обмотки. Если эти три трансформатора расположить так, чтобы стержни, не имеющие обмоток, находились рядом, то три стержня можно объединить в один.
Нужно отметить, что первые системы трехфазных стержневых трансформаторов, предложенные и разработанные их изобретателем М. О. Доливо-Добровольским, имели стержни, расположенные равномерно в трех плоскостях по окружности ярма.
Схема соединения обмоток трансформатора для нагрева током нулевой последовательности при соединении обмоток НН. а — в звезду. а — в треугольник. |
Нагрев трансформаторов током нулевой последовательности применим для трехфазных стержневых трансформаторов. Для однофазных трансформаторов применение этого метода нагрева требует пересоединения обмоток на стержнях, а для броневых трансформаторов — наложения специальной обмотки на магнитопровод.
Наиболее распространенными конструкциями трехфазных магнитных систем являются трехфазный групповой трансформатор, образованный из трех однофазных трансформаторов, каждая фаза которого имеет самостоятельную магнитную систему и трехфазный стержневой трансформатор, отличающийся от группового тем, что магнитные цепи всех трех стержней связаны ярмами в единую магнитную систему.
Схемы измерения потерь холостого хода при малом подводимом напряжении. а — питание обмотки ВН, соединенной звездой. б — питание обмотки НН, соединенной треугольником. |
Назначение и виды
Трехфазный трансформатор Классический станционный трехфазный силовой трансформатор используется для преобразования высоковольтной энергии в удобную для потребителя форму. На его первичные обмотки подается высокое напряжение (6,3-10 киловольт), а на выходе получают более удобные для использования в быту 220 Вольт. Эта величина измеряется между фазами и нулевой жилой трансформатора, называемой нейтралью. Ее принято обозначать как фазное напряжение, в отличие от линейных 380 Вольт, отсчитываемых между каждой из фаз.
Трехфазные понижающие трансформаторы этого класса обеспечивают передачу тока от местной подстанции по подземному кабелю или линии электропередач непосредственно до конечного потребителя. Для этих целей используется специальный 4-хжильный кабель в бронированном сердечнике, либо воздушный провод марки СИП. По ним электрическая энергия доставляет прямо по назначению — на вводно-распределительные устройства обслуживаемых территорий и объектов.
По своему функциональному назначению 3 фазные трансформаторы подразделяются на следующие классы:
- линейные (станционные) устройства;
- специальные преобразовательные агрегаты.
Особо выделяются трехфазные разделительные трансформаторы, используемые для развязки электрических схем и силовых цепей.
Испытательный трансформатор Специальные устройства делятся на следующие виды:
- Испытательные трансформаторы. К ним принято относить трехфазные автотрансформаторные системы.
- Устройства, используемые для питания специальной аппаратуры: сварочных агрегатов, в частности.
- Симметрирующие трансформаторные агрегаты.
Первые два типа применяются в исследовательских целях. Трансформаторы симметрирующие трехфазные используются для устранения перекоса фаз, возникающего в электрических сетях из-за неравномерности распределения нагрузок.
Устройство трехфазного силового трансформатора
Основными частями трансформатора являются магнитопровод и обмотка. Магнитопровод собирается из листов электротехнической стали толщиной 0,3-0,5мм. Изоляция листов представляет собой покрытие лаковой пленкой листа стали с обеих сторон. Магнитопровод разделяется на стержни и ярмо. Стержень это вертикальная часть магнитопровода, на которую насаживается обмотка. Ярмо – это горизонтальная часть, которая замыкает магнитный поток.
Трехфазные трансформаторы чаще всего выполняются с тремя стержнями (стержневой тип), на которых располагаются три обмотки. Соединение стержней и ярма бывает двух видов – стыковое и шихтованное. Стыковое соединение – ярмо и стержни крепятся соединительными деталями, при этом удобно снимать обмотки. При шихтованном соединении – ярмо и стержни собираются листами стали внахлест, в этом случае уменьшается магнитное сопротивление магнитопровода за счет уменьшения воздушного зазора. Также механическая прочность шихтованного соединения выше, чем у стыкового соединения.
Обмотки трансформатора выполняют из медного проводника круглого или квадратного сечения. Изоляцией выступает кабельная бумага или хлопчатобумажная пряжа.
Магнитопровод с баком заземляют, для безопасности на случай обрыва обмотки.
В масляных трансформаторах магнитопровод с обмоткой опускают в бак, залитый трансформаторным маслом. Масло отбирает тепло от обмоток. Характеристики масла выше, чем у воздуха, следовательно, габариты масляного трансформатора и сухого трансформатора одной мощности более выигрышны у масляного трансформатора.
При изменении климатических условий уровень масла может меняться. Происходит это не в баке трансформатора, а в специальном расширителе, который представляет собой сосуд на крышке бака, сообщающимся с ним.
При ненормальных режимах, таких как короткие замыкания, может изменяться давление масла, из-за выделения газов в масле. Для сброса этого давления на трансформаторах используют выхлопную трубу. На верхней части трубы находится стеклянная пластина. При повышении давления пластина разлетается, и давление выходит из трансформатора.
На мощных трансформаторах предусмотрено газовое реле. При повышении давления из-за выброса газов (например, при коротких замыканиях внутри трансформатора) происходит срабатывание реле и идет сигнал на отключение выключателя. После чего трансформатор отключается от сети.
Соединение обмоток с сетью происходит через ввода трансформатора. Они бывают различной конструкции: с главной изоляцией фарфоровой покрышки, конденсаторные проходные изоляторы, с бумажно-масляной, полимерной, элегазовой, маслобарьерной изоляцией.
В трансформаторах встречается возможность изменять число витков обмоток (группы соединения обмоток). Для этих целей используются ПБВ (переключатель числа витков без возбуждения) и РПН (регулирование числа витков под нагрузкой).
Группы соединений обмоток
Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.
Рисунок 2. Группы соединений однофазного трансформатора |
На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому «левыми», причем у обеих обмоток начала A, a находятся сверху, а концы X, x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу. Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с. EA и Ea совпадают по фазе, как показано на рисунке 2, а. Если же у одной из обмоток переменить начало и конец (рисунок 2, б), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°. Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит «правой».
Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку. Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название «группа 12»). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6. Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.
Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0 |
Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, «правую»); 2) начала и концы обмоток расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a, а также B и b, C и c) находятся на общих стержнях (рисунок 3, а). Тогда звезды фазных э. д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б. При этом одноименные векторы линейных э. д. с. (например, EAB и Eab) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.
Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б) произойдет круговая перестановка букв a, b, c по часовой стрелке. При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные. Такие же группы соединений можно получить при схеме соединений Δ/Δ.
Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11 |
Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а, и соблюдены те же условия, которые были оговорены для рисунка 3, а. Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б. При этом одноименные линейные э. д. с. (напрмер, EAB и Eab) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в. Соединение обмоток такого трансформатора обозначаются Y/Δ-11. При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay, bz, cx в треугольнике на рисунке 4, а перемычек az, bx, cy) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.
Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,»Трансформаторы силовые. Общие технические условия», предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11, Δ/Y0-11, и Δ /Δ-0. При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс «0» указывает на то, что наружу выводится нулевая точка обмотки.
Соединение треугольником
Соединение вторичных обмоток в трехфазном трансформаторе треугольником будет выдавать одинаковое линейное и фазное напряжение, как и при соединении звездой, если напряжение составит 220 В. При одинаковом значении потребляемой мощности, линейные токи будут превышать фазные в √3 раза.
Трехфазная система напряжений представляет собой симметричную схему. Это означает, что и магнитная система, которую имеют все трехфазные трансформаторы, будет симметричной. Такая система очень сложная в изготовлении, поэтому широкое распространение получила плоская конструкция, в которой отсутствует центральный стержень. Необходимость в нем отпадает, поскольку сумма магнитных потоков здесь равна нулю.
Плоский вариант конструкции считается более технологичным и удобным при компоновке, хотя она и является несимметричной. Токи в крайних фазах заметно превышают ток в средней фазе, из-за чего нарушаются фазовые углы. Для ликвидации такой асимметрии сечение в верхнем и нижнем ярме увеличивается примерно на 10-15% по сравнению со стержнем. Однако, несмотря на принятые меры, некоторая асимметрия все равно остается.
Схемы соединений обмоток треугольник и звезда для чайников.
Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.
Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).
Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)
При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх — проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)
Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.
Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)
В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой
последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.
Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.
Выбор схемы соединения обмоток зависит от ряда причин:
- Схемы питания трансформатора
- Мощности трансформатора
- Уровня напряжения
- Асимметрии нагрузки
- Экономических соображений
Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.
На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.
Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.
Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.
Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.
Как рассчитать силовой трансформатор по формулам за 5 этапов
Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.
По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.
В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.
Потери мощности во вторичной обмотке оценивают по статистической таблице.
Мощность трансформатора, ватты | Коэффициент полезного действия ŋ |
15÷50 | 0,50÷0,80 |
50÷150 | 0,80÷0,90 |
150÷300 | 0,90÷0,93 |
300÷1000 | 0,93÷0,95 |
>1000 | 0.95÷0,98 |
Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.
Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:
- для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
- у сердечника из Ш-образных пластин Qc=0,7√S1.
Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток
Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.
Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.
На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.
Этап №3. Как вычислить диаметры медного провода для каждой обмотки
При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.
Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.
Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.
Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.
Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.
Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.
Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.
Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).
В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.
Этап №5. Учет свободного места внутри окна магнитопровода
На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.
Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.
Назначение и принцип действия трансформатора
Назначение и принцип действия трансформатора — это передача электрической энергии на значительные расстояния от электростанций к различным потребителям: промышленным предприятиям, населению и т.п, с помощью электродвижущей силы и магнитной индукции.
Трансформаторы позволяют значительно экономить на стоимости проводов, а также снижают потери электроэнергии в линиях электропередач. Так как от силы тока зависит сечение проводов то, увеличивая напряжение и снижая силу тока (не снижая при этом передаваемую мощность) можно эффективно предавать напряжение на значительные расстояния.
передача электроэнергии трансформаторами
Это позволяет экономить на линиях электропередач:
- Используя провода с меньшим поперечным сечение, снижается расход цветных металлов;
- Уменьшаются потери мощности при передаче электроэнергии на большие расстояния.
На электростанциях вырабатывается электрическая энергия посредством синхронных генераторов и составляет от 11 кВ до 20кВ, в некоторых случаях может применяться напряжение 30-35 кВ. Эти величины не подходят как в быту, так и на промышленном производстве из-за слишком высокого напряжения. Но эти напряжения также недостаточны для экономичной передачи электроэнергии на расстояния. Поэтому на выходе из электростанций ставятся повышающие трансформаторы, которые повышают напряжение до 750 кВ, U=750kV напряжение которое непосредственно передается по линиям электропередач.
Приемники электрической энергии: различные бытовые приборы, электродвигатели, станки на производстве из-за соображения безопасности и конструктивными сложностями изготовления (требования к усиленной изоляции), также не могут работать с такими высокими напряжениями. Они рассчитываются на более низкое напряжения, как правило, это 220V в быту и 380V на производстве.
Повышающие трансформаторы используют для передачи электроэнергии на большие расстояния, понижающие для распределения электроэнергии в точке разветвления потребителей.
Электрическая энергия по пути движения от электростанции до потребителя может трансформироваться 3 или 4 раза. Преобразование электроэнергии происходит с помощью магнитопровода трансформатора и переменного магнитного поля.
Устройство трансформатора
Устройство трехфазного силового трансформатора
По своему устройству трехфазные трансформаторы представляют сборную конструкцию, состоящую из следующих узлов:
- основание, изготавливаемое в виде прочного пластикового каркаса;
- магнитопровода, размещенные в каркасных секциях;
- набор первичных и вторичных катушек с проволочными обмотками;
- распределительная (распаечная) панель с контактными колодками;
- система охлаждения, необходимая для отвода тепла от рабочей зоны.
Исключение составляет панель распайки отводов обмоток трансформатора, благодаря которой удается комбинировать группы подключений для получения нужной конфигурации.
Что происходит при перекосе фаз?
Данное явление получается из-за нагрузочной неравномерности фаз. Происходит увеличение токов и падение напряжения, компенсирующегося другими фазами. При этом на остальных фазах возрастает напряжение, что плохо влияет на потребителей.
Самым энергоэффективным способом исправления перекоса фаз считается использование симметрирующих устройств (СУ), которые способны убрать токи нулевой и обратной последовательности.
Они делятся на виды:
- конденсаторные;
- преобразующие;
- компенсационные СУ.
Последние аппараты представляют собой устройства с подсоединением в рассечку «нуля» трансформатора симметрирующего трехфазного (ТСТ) компенсационной обмотки. Этот способ самый эффективный, так как характеризуется высокими показателями симметрирования.