Электронные выключатели и переключатели, реле времени (к561тм2, cd4060)

Моделирование RS-триггера

При реализации алгоритмов релейной защиты достаточно часто используются триггеры. Триггер – это нелинейный элемент, выходной сигнал которого может находиться в одном из двух устойчивых состояний в зависимости от входных сигналов. У наиболее часто используемого RS-триггера 2 входа: S — set (для установки выходного значения) и R — reset (для сброса выходного значения).

Пройдите наш онлайн-курс по MATLAB/SIMULINK. Там вы научитесь пользоваться MATLAB как мощным калькулятором, создавать свои модели в SIMULINK, моделировать электрические цепи, а также сложные электроэнергетические системы с устройствами релейной защиты.

RS-триггер сохраняет своё предыдущее состояние при подаче нулевого сигнала на оба входа триггера, а меняет его при подаче единичного сигнала на один из входов. При этом при подаче на вход S единичного сигнала на выходе будет так же наблюдаться единичный сигнал, а при подаче на вход R единичного сигнала на выходе будет наблюдаться нулевой сигнал. В том случае, если на оба входа подаются единичные сигналы, то выходной сигнал зависит от того, с каким приоритетом выполнен данный RS-триггер. Зависимость выходного сигнала Q от входных сигналов S и R приведена в табл. 1.

Табл. 1. Зависимость выходного сигнала от входных сигналов для RS-триггера

S R Q для триггера с приоритетом S Q для триггера с приоритетом R
1 1 1
1
1 1 1

В Simulink есть стандартный блок «Bistable», который представляет собой RS-триггер с выбираемым приоритетом входа. Протестируем данный элемент с помощью приложенной схемы в Simulink rs_trigger.mdl

Обратим внимание, что у данного элемента 2 выхода – Q и !Q, где второй выход представляет собой инвертированный первый выход. Вид схемы приведён на рис

1.

Рис. 1. Схема для тестирования RS-триггера в Simulink

На рис. 2-3 представлены результаты тестирования RS-триггеров с разным приоритетом входов. Полученные результаты полностью совпадают с зависимостью, приведённой в табл. 1.

Рис. 2. Результаты тестирования RS-триггера с приоритетом входа S

Рис. 3. Результаты тестирования RS-триггера с приоритетом входа R

Применение RS-триггеров в устройствах релейной защиты позволяет избежать, например, дребезга контактов реле, когда за малый промежуток времени реле то срабатывает, то возвращается. Смоделируем дребезг контактов реле с помощью генератора импульсов (рис. 4). На рис. 5 приведён выходной сигнал от RS-триггера. Видим, что выходной сигнал от триггера постоянный и не зависит от изменения входного сигнала, подаваемого на вход S.

Рис. 4. Схема для моделирования дребезга контактов реле

Рис. 5. Результаты тестирования RS-триггера при дребезге реле

Рекомендуемые записи

  • Моделирование релейной защиты в Simulink Программный комплекс Matlab/Simulink позволяет моделировать не только электрические сети, но и многое другое, в том…
  • Моделирование фильтра аварийных составляющих Аварийные составляющие – параметры, возникающие при любой коммутации в электрической системе. Они являются одними из…
  • Моделирование релейной защиты в Simulink Программный комплекс Matlab/Simulink позволяет моделировать не только электрические сети, но и многое другое, в том…

Принцип работы триггера Шмитта

В идеальном случае передаточная характеристика триггера Шмитта имеет вид изображённый на рисунке выше. В случае если входное напряжение триггера не превышает напряжение срабатывания U1 (UВХ < U1), то триггер находится в одном из устойчивых состояний, а напряжение на выходе находится на уровне Е0 (UВЫХ = Е0). Когда же напряжение на входе превысит порог срабатывания (UBX > U1), то триггер моментально перейдёт в другое устойчивое состояние и напряжение на выходе станет равным рабочему напряжению триггера Е1 (UВЫХ = Е1). После этого напряжение на входе может изменяться в некоторых пределах, но на выходе останется постоянным и равным рабочему напряжению Е1.

Чтобы вернуть триггер Шмитта в исходное состояние, необходимо, чтобы напряжение на входе уменьшилось до некоторого уровня, называемого порогом отпускания триггера. Как только напряжение на входе уменьшится до некоторого уровня напряжения U2 (UВХ < U2), то триггер скачкообразно перейдёт в исходное состояние, при котором напряжение на выходе будет равным Е0 (UВЫХ = Е0).

Величины напряжений пороговых уровней срабатывания и отпускания триггера полностью определяются элементами электронной схемы данного типа триггера.

Как правило, в настоящее время триггеры Шмитта изготавливаются в интегральном исполнении, параметры которого удовлетворяют в большинстве случаев. Но в некоторых случаях имеет место изготовление данного типа триггеров и в дискретном исполнении, например, в экспериментальной или высоковольтной отраслях. Давайте рассмотрим схему триггера Шмитта в дискретном исполнении на транзисторах.

Т-триггер. Принцип работы, функциональные схемы

Триггер – простейшее устройство, представляющее собой цифровой автомат. Оно имеет два состояния устойчивости. Одному из этих состояний присваивается значение «1», а другому «0». Состояние устройства, а также значение двоичной информации, которая в нем хранится, определяется выходными сигналами: прямым и инверсным. В том случае, когда на прямом выходе установится потенциал, который соответствует логической единице, в таком случае состояние триггера называется единичным (при этом потенциал на инверсном выходе соответствует логическому нулю). Если же на прямом выходе нет потенциала, то состояние триггера называется нулевым.

Классифицируют триггеры по следующим признакам:

1. По способу записываемой информации (асинхронные и синхронные).

2. По способу управлением информацией (статистические, динамические, одноступенчатые, многоступенчатые).

3. По способу реализации логических связей (JK-триггер, RS-триггеры,Т-триггер, D-триггер и других типов).

Основными параметрами всех типов триггеров являются: максимальная длительность входного сигнала, время задержки необходимого для переключения триггера, а также разрешающее время срабатывания.

В этой статье поговорим о таком типе устройств, как – Т-триггер. Такие триггеры имеют всего один информационный (Т) вход, который называют счетным входом. Он изменяет свое исостояние после поступления на счетный (Т) вход каждого управляющего сигнала.

Согласно таблицы переходов, закон функционирования таких триггеров описывается характеристическим уравнением: Q(t+1)=TtQ’t V T’tQt. Из уравнения следует, что при поступлении на вход (Т) логического нуля, Т-триггер сохранит свое состояние, а при подаче логической единицы, изменит на противоположное.

Qt Tt Q(t+1)
1 1
1 1
1 1

Из таблицы видно, что Т-триггер выполняет операцию сложения, это и обусловило название такого триггера счетным, его информационный (Т) вход– счетным входом. Уровень сигнала на входе такого триггера появляется в два раза чаще, чем на его выходе (Q). Соответственно Т-триггер используют в качестве делителя частоты.

Т-триггер асинхронного типа может быть сконструирован на базе двухступенчатого триггера RS с дополнительными связями, а именно: выход триггера (Q) необходимо соединить со входом (R), а выход (Q’) со входом (S). Информационным входом (Т) будет являться синхронный вход (С).

На фото изображен Т-триггер. Схема функциональная.

В исходном состоянии на информационных входах триггера (R и S) подается уровень логического нуля, при подаче на счетный (Т) вход логического нуля, будет происходить постоянное копирование состояния первого триггера вторым триггером, потому что элемент И-НЕ будет выдавать уровень логической единицы на вход второго триггера. Если Т-триггер находился в состоянии единицы, то на входы (R и S) будет подаваться уровни нуля и единицы соответственно. При поступлении на счетный вход первого сигнала равного логической единице, в первый триггер запишется логическая единица. Состояние же второго триггера не изменяется, потому что уровень нуля с выхода логического элемента И-НЕ блокирует его состояние. После снятия счетного импульса на входе (Т) устанавливается нуль, и второй триггер переключается в состояние логической единицы.

На фото синхронный T-триггер. Схема функциональная.

Синхронные Т-триггеры используют в случае необходимости представлять потенциалом последовательность логической единицы на входе Т-триггера.

Краткие теоретические сведения

Триггеры предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений).

Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

RS-триггер

Основным триггером, на котором базируются все остальные триггеры является RS-триггер. RS-триггер имеет два логических входа:

  • R – установка 0 (от слова reset);
  • S – установка 1 (от слова set).

RS-триггер имеет два выхода:

  • Q – прямой;
  • Q- обратный (инверсный).

Состояние триггера определяется состоянием прямого выхода. Простейший RS-триггер состоит из двух логических элементов, охваченных перекрёстной положительной обратной связью.

Рассмотрим работу триггера:

Пусть R=0, S=1. Нижний логический элемент выполняет логическую функцию ИЛИ-НЕ, т.е. 1 на любом его входе приводит к тому, что на его выходе будет логический ноль Q=0. На выходе Q будет 1 (Q=1), т.к. на оба входа верхнего элемента поданы нули (один ноль – со входа R, другой – с выхода ). Триггер находится в единичном состоянии. Если теперь убрать сигнал установки (R=0, S=0), на выходе ситуация не изменится, т.к. несмотря на то, что на нижний вход нижнего логического элемента будет поступать 0, на его верхний вход поступает 1 с выхода верхнего логического элемента.

Будет интересно Все о законе Ома: простыми словами с примерами для «чайников»

Триггер будет находиться в единичном состоянии, пока на вход R не поступит сигнал сброса. Пусть теперь R=1, S=0. Тогда Q=0, а =1. Триггер переключился в “0”. Если после этого убрать сигнал сброса (R=0, S=0), то все равно триггер не изменит своего состояния. Для описания работы триггера используют таблицу состояний (переходов). Обозначим:

  • Q(t) – состояние триггера до поступления управляющих сигналов (изменения на входах R и S);
  • Q(t+1) – состояние триггера после изменения на входах R и S.

Таблица переходов RS триггера в базисе ИЛИ-НЕ

R S Q(t) Q(t+1) Пояснения
Режим хранения информации R=S=0
1 1
1 1 Режим установки единицы S=1
1 1 1
1 Режим установки нуля R=1
1 1
1 1 * R=S=1 запрещённая комбинация
1 1 1 *

RS-триггер можно построить и на элементах “И-НЕ” (рисунок 2.2).

Входы R и S инверсные (активный уровень “0”). Переход (переключение) этого триггера из одного состояния в другое происходит при установке на одном из входов “0”. Комбинация R=S=0 является запрещённой.

Таблица переходов RS триггера в базисе “2И-НЕ”

R S Q(t) Q(t+1) Пояснения
* R=S=0 запрещённая комбинация
1 *
1 Режим установки нуля R=0
1 1
1 1 Режим установки единицы S=0
1 1 1
1 1 Режим хранения информации R=S=1
1 1 1 1

Синхронный RS-триггер

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как при изменении входных сигналов может возникать переходный процесс (в цифровых схемах этот процесс называется “опасные гонки”), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены, и сигнал на выходе комбинационной схемы соответствует выполняемой ею функции. Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала).

Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Принципиальная схема синхронного RS триггера приведена.

Таблица переходов синхронного RS-триггера

R S C Q(t) Q(t+1) Пояснения
1 Режим хранения информации R = S = 0
1 1 1
1 1 1 Режим установки единицы S =1
1 1 1 1
1 1 Режим установки нуля R=1
1 1 1
1 1 1 * R = S = 1 запрещённая комбинация
1 1 1 1 *

В таблице 2.3. под сигналом С подразумевается синхроимпульс. Без синхроимпульса синхронный RS триггер сохраняет своё состояние.

Физические реализации триггеров

Базовый элемент создают из полупроводниковых приборов, используя современные технологические процессы для миниатюризации функциональных изделий.


Логический элемент на МОП транзисторах

Триггеры с тиристорами

Для повышения мощности подключаемой нагрузки можно собрать триггер с применением тиристоров. К управляющему электроду присоединяют вход S, к затвору – R. Для поддержания постоянного напряжения на аноде подойдет транзистор, включенный в соответствующую цепь.

Триггеры на релейно-контакторной базе

Несмотря на общие тенденции миниатюризации, вполне допустимо создать функциональный триггер из реле. Подобные решения, в частности, применяют для защиты цепей питания при включении мощных электроприводов.

Краткие теоретические сведения

Триггеры предназначены для запоминания двоичной информации. Использование триггеров позволяет реализовывать устройства оперативной памяти (то есть памяти, информация в которой хранится только на время вычислений).

Однако триггеры могут использоваться и для построения некоторых цифровых устройств с памятью, таких как счётчики, преобразователи последовательного кода в параллельный или цифровые линии задержки.

RS-триггер

Основным триггером, на котором базируются все остальные триггеры является RS-триггер. RS-триггер имеет два логических входа:

  • R – установка 0 (от слова reset);
  • S – установка 1 (от слова set).

RS-триггер имеет два выхода:

  • Q – прямой;
  • Q- обратный (инверсный).

Состояние триггера определяется состоянием прямого выхода. Простейший RS-триггер состоит из двух логических элементов, охваченных перекрёстной положительной обратной связью.

Рассмотрим работу триггера:

Пусть R=0, S=1. Нижний логический элемент выполняет логическую функцию ИЛИ-НЕ, т.е. 1 на любом его входе приводит к тому, что на его выходе будет логический ноль Q=0. На выходе Q будет 1 (Q=1), т.к. на оба входа верхнего элемента поданы нули (один ноль – со входа R, другой – с выхода ). Триггер находится в единичном состоянии. Если теперь убрать сигнал установки (R=0, S=0), на выходе ситуация не изменится, т.к. несмотря на то, что на нижний вход нижнего логического элемента будет поступать 0, на его верхний вход поступает 1 с выхода верхнего логического элемента.

Будет интересно Что такое элемент Пельтье и как его сделать своими руками?

Триггер будет находиться в единичном состоянии, пока на вход R не поступит сигнал сброса. Пусть теперь R=1, S=0. Тогда Q=0, а =1. Триггер переключился в “0”. Если после этого убрать сигнал сброса (R=0, S=0), то все равно триггер не изменит своего состояния. Для описания работы триггера используют таблицу состояний (переходов). Обозначим:

  • Q(t) – состояние триггера до поступления управляющих сигналов (изменения на входах R и S);
  • Q(t+1) – состояние триггера после изменения на входах R и S.

Таблица переходов RS триггера в базисе ИЛИ-НЕ

R S Q(t) Q(t+1) Пояснения
Режим хранения информации R=S=0
1 1
1 1 Режим установки единицы S=1
1 1 1
1 Режим установки нуля R=1
1 1
1 1 * R=S=1 запрещённая комбинация
1 1 1 *

RS-триггер можно построить и на элементах “И-НЕ” (рисунок 2.2).

Входы R и S инверсные (активный уровень “0”). Переход (переключение) этого триггера из одного состояния в другое происходит при установке на одном из входов “0”. Комбинация R=S=0 является запрещённой.

Таблица переходов RS триггера в базисе “2И-НЕ”

R S Q(t) Q(t+1) Пояснения
* R=S=0 запрещённая комбинация
1 *
1 Режим установки нуля R=0
1 1
1 1 Режим установки единицы S=0
1 1 1
1 1 Режим хранения информации R=S=1
1 1 1 1

Синхронный RS-триггер

Схема RS-триггера позволяет запоминать состояние логической схемы, но так как при изменении входных сигналов может возникать переходный процесс (в цифровых схемах этот процесс называется “опасные гонки”), то запоминать состояния логической схемы нужно только в определённые моменты времени, когда все переходные процессы закончены, и сигнал на выходе комбинационной схемы соответствует выполняемой ею функции. Это означает, что большинство цифровых схем требуют сигнала синхронизации (тактового сигнала).

Все переходные процессы в комбинационной логической схеме должны закончиться за время периода синхросигнала, подаваемого на входы триггеров. Триггеры, запоминающие входные сигналы только в момент времени, определяемый сигналом синхронизации, называются синхронными. Принципиальная схема синхронного RS триггера приведена.

Таблица переходов синхронного RS-триггера

R S C Q(t) Q(t+1) Пояснения
1 Режим хранения информации R = S = 0
1 1 1
1 1 1 Режим установки единицы S =1
1 1 1 1
1 1 Режим установки нуля R=1
1 1 1
1 1 1 * R = S = 1 запрещённая комбинация
1 1 1 1 *

В таблице 2.3. под сигналом С подразумевается синхроимпульс. Без синхроимпульса синхронный RS триггер сохраняет своё состояние.

Триггер что это такое

Общие принципы запоминающих элементов представлены выше. Триггером называется устройство, способное поддерживать 2 или больше устойчивых состояния, которые меняются под воздействием входных сигналов. Фактически речь о способе хранения минимального количества информации – 1 бит.

Осциллограф — понятие и конструкция прибора

Любой триггерный автомат состоит из двух основных блоков. Первый – предназначен для сравнения или другого вида обработки входных сигналов. Второй – обеспечивает хранение данных и отображение состояния соответствующими выходными сигналами:

  • «1» – высокий уровень, прямой, Q;
  • «0» – низкое напряжение, обратный (инверторный), /Q.

Как правило, между функциональными блоками организована обратная связь. Входные сигналы также делят на группы:

  • информационные – R, T, S;
  • управляющие – V, C.

К сведению. Рабочие циклы описывают в табличной форме, которая наглядно показывает состояние памяти при разных комбинациях входных сигналов.

4.4. Триггеры

Триггер

– это устройство с двумя устойчивыми состояниями, одно из которых – логический нуль, другое – логическая единица. Эти состояния триггера при бесперебойном питании и при отсутствии существенных помех и наводок могут сохраняться сколь угодно долго. Под действием управляющих сигналов триггер способен переключаться из одного состояния в другое. Основноеназначение триггера – хранение двоичной информации. Например, в персональных компьютерах на триггерах собрана кэш-память первого и второго уровней.

Триггер, в отличие от комбинационных схем, относится к новому виду цифровых устройств – цифровым автоматам

. Цифровые автоматы, кроме комбинационных схем, содержат элементы памяти. Если выходные сигналы цифрового автомата зависят как от входных сигналов, так и от состояния запоминающего устройства, то такие автоматы называют автоматами Мили. Если выходные сигналы определяются только состояниями запоминающего устройства, то получим автомат Мура.

Различают несколько разновидностей триггеров: RS

-триггер,D -триггер,JK -триггер. Реже используютсяDV -триггер иТ -триггер. Если для изменения состояния триггера используется синхронизирующий сигнал, то триггер называетсясинхронным (синхронизируемым). Если синхронизирующие сигналы не используются, то триггер называетсяасинхронным .

Например, в простейшем асинхронном RS- триггере

использованы схемы ИЛИ-НЕ (стрелка Пирса) с перекрестными обратными связями (рис. 4.21). Здесь использованы следующие обозначения:R – вход установки триггера в 0;S – вход установки триггера в 1;Q – прямой выход триггера; – вспомогательный (инверсный) выход триггера, сигнал на котором инвертирован относительно прямого выхода. Такие же обозначения используются для наименованиясигналов на соответствующих контактах триггера.

Рассмотрим работу RS

-триггера. Пусть в нулевой момент времени при нулевых сигналах на входахR иS на триггер подано напряжение питания. Однако на выходах триггера в этот момент времени оба выходных сигнала будут равны нулю:

Мгновенно эти сигналы увеличиться не могут, так как в реальных схемах всегда имеются паразитные емкости, а напряжение на конденсаторе скачкообразно измениться не может. Из свойств элемента ИЛИ-НЕ следует, что при нулевых сигналах на его входах напряжение на его выходе должно возрастать до значения логической единицы.

На практике из-за не идентичности двух элементов ИЛИ-НЕ на одном из выходов (Q или ) напряжение возрастает быстрее.

Пусть более быстро напряжение возрастает на выходе Q. Это напряжение поступает на второй логический элемент и начинает уменьшать напряжение на его выходе , устремляя его к нулю. В свою очередь, уменьшающееся напряжение на выходе , попадая на первый логический элемент, еще более ускоряет увеличение напряжения на выходе Q. Таким образом, благодаря положительной обратной связи быстро устанавливается единичное состояние триггера:

Q =

1;= 0.

Подавая на вход R

логическую единицу приS = 0 и используя свойства схемы ИЛИ-НЕ, получим:

Q

= 0; = 1.

Так производится операция установки триггера в нулевое состояние. Если после этого сигнал на входе R

сделать равным 0, то новое состояние триггера сохраняется.

При подаче единицы на вход S

и приR = 0 триггер устанавливается в единичное состояние:

Q

= 1.

Если R =S = 1, то на обоих выходах,Q и , возникают нули, что противоречит определению выходов триггера. Такая комбинация управляющих сигналовзапрещена (после этого работоспо собность триггера не теряется). Таблица состоянийRS -триггера приведена на рис. 4.22.

При хранении состояние триггера в данный момент времени определяется его состоянием в предыдущий момент времени:

где n

– номер временного отсчета. Условное обозначениеRS -триггера приведено на рис. 4.23.

Рассмотренный RS-

триггер при наличии помех часто работает ненадежно. Например, короткие импульсные помехи, попадающие наR — илиS -входы, могут изменить состояние триггера. Для повышения помехоустойчивости и для устранения «состязаний» используютсинхронныйRS-триггер, схема и условное обозначение которого приведены на рис. 4.24,а,б соответственно.

Состояние синхронного триггера может измениться только при установлении логической единицы на входе синхронизации С. В этом случае элементы И «открываются», и управляющие сигналы поступают на входы асинхронного триггера. Такая синхронизация называется статической

.

Универсальный триггер

JK-триггер

JK-триггером называют автомат Мура с двумя устойчивыми состояниями и двумя входами J и K, который при условии J * K = 1 осуществляет инверсию предыдущего состояния (т.е. при J*K=1, Q(t+1) = Q(t)), а в остальных случаях функционируют в соответствии с таблицей истинности RS триггера, при этом вход J эквивалентен входу S, а вход K — входу R. Этот триггер уже не имеет запрещенной комбинации входных сигналов и его таблица истинности, то есть зависимость Q(t+1) = f имеет вид:

Таблица истинности JK-триггера:

J K Q(t) Q(t+1)

По этой таблице можно построить диаграмму Вейча для Q(t+1), которую можно использовать для минимизации, и матрицу переходов:

KQ(t)
J

Матрица переходов JK-триггера:

J K Q(t) Q(t+1)
b1
b2
b3
b4
____ _
Q(t+1) = J* Q(t) v K *Q(t)

В интегральной схемотехнике применяются только тактируемые (синхронные) JK триггера, которые при C=0 сохраняют свое состояние, а при C=1 работают как асинхронные JK триггера.

Триггер JK относится к разряду универсальных триггеров, поскольку на его основе путем несложной внешней коммутации можно построить RS-, D— и T— триггера. RS-триггер получается из триггера JK простым наложением ограничения на комбинацию входных сигналов J=K=1, так как эта комбинация является запрещенной для RS триггера.

Счетный триггер на основе JK триггера получается путем объединения входов J и K.

Триггер задержки (D-триггер) строится путем подключения к входу K инвертора, на который подается тот же сигнал, что и на вход J. В этом случае вход J выполняет функцию входа D, а все устройство в целом реализует таблицу переходов D-триггера.

Лекция 6. Структурная схема конечного автомата

В структурной теории автомат представляют в виде композиции двух частей: запоминающей части, состоящей из элементов памяти, и комбинационной части, состоящей из логических элементов:

Комбинационная схема строится на логических элементах, образующих функционально полную систему, а память – на элементарных автоматах, обладающих полной системой переходов и выходов.

Каждое состояние абстрактного автомата ai, где i={0, n}, кодируется в структурных автоматах набором состояний элементов памяти Qi, r={1,R}. Поскольку в качестве элементов памяти используются обычные триггера, то каждое состояние можно закодировать двоичным числом ai = Q1a1Q2a2… Qrar. Здесь аi={0, 1}, a Q – состояние автомата . Отсюда:

__
Qa = Q ,еслиa=0
Q ,еслиa=1

Общее число необходимых элементов памяти можно определить из следующего неравенства . Здесь (n+1) – число состояний. Логарифмируя неравенство получим . Здесь ]C [ — означает, что необходимо взять ближайшее целое число, большее или равное C.

В отличии от абстрактного автомата, имеющего один входной и один выходной каналы, на которые поступают сигналы во входном X={x1,x2,…,xm} и выходном Y={y1,y2,…,yk} алфавитах, структурный автомат имеет L входных и Nвыходных каналов. Каждый входной xj и выходной yj сигналы абстрактного автомата могут быть закодированы двоичным набором состояний входных и выходных каналов структурного автомата.

xi = o1a1 o2a2… oLaL
yg = Z1a1Z2a2… ZNaN

Здесь ofи Zh– состояния входных и выходных каналов соответственно.

Очевидно число каналов L и N можно определить по формулам ; , аналогичным формуле для определения R.

Изменение состояния элементов памяти происходит под действием сигналов U=(U1,U2,…,Ur), поступающих на их входы. Эти сигналы формируются комбинационной схемой II и называются сигналами возбуждения элементарных автоматов. На вход комбинационной схемы II, кроме входного сигнала xj, по цепи обратной связи поступают сигналы Q=(Q1, Q2, …, QR), называемые функцией обратной связи от памяти автомата к комбинационной схеме. Комбинационная схема I служит для формирования выходного сигнала yg, причем в случае автомата Мили на вход этой схемы поступает входной сигнал xj, а в случае автомата Мура – сигнал xj не поступает, так как yg не зависит от xj.