Оглавление
- Применение в быту
- Применение варистора
- Статическое сопротивление варистора
- Главные свойства
- Характеристики
- Принцип работы варистора
- Варисторы 07К…20К
- Свойства
- TVR10471 Datasheet PDF — TKS
- Справочник и маркировка варисторов
- Выбор варистора
- Информация о варисторах
- Теперь, когда мы разобрались с основами, можно перейти к проверке варистора
- Назначение и характеристики
- Изготовление варистора
- Проверка на исправность
Применение в быту
Назначение варисторов — защита цепи при импульсах и перенапряжениях на линии. Это свойство позволило рассматриваемым элементам найти свое применение в качестве защиты:
- линий связи;
- информационных входов электронных устройств;
- силовых цепей.
В большинстве дешевых блоков питания не устанавливают никаких защит. А вот в хороших моделях по входу устанавливают варисторы.
Кроме того, все знают, что компьютер нужно подключать к питанию через специальный удлинитель с кнопкой — сетевой фильтр. Он не только фильтрует помехи, в схемах нормальных фильтров также устанавливают варисторы.
Чтобы защитить всю квартиру — вы можете установить варистор на дин-рейку, в хороших устройствах в корпусе расположены настоящие мощные варисторы диаметром с кулак. Примером такого устройства является ОИН-1, который изображен на фото ниже:
Напоследок рекомендуем просмотреть полезные видео по теме статьи:
Наверняка вы не знаете:
- Какие бывают помехи в электросети
- Принцип работы УЗИП
- Как сделать сетевой фильтр своими руками
- Как проверить резистор в домашних условиях
Ремонт и диагностика неисправностей радиоэлектронных устройств происходит путём нахождения вышедших из строя элементов с последующей их заменой. Визуально определить, какая радиодеталь неисправна, часто не представляется возможным, поэтому для выявления поломок используют измерительные приборы — тестеры. С их помощью проверить варистор обычно не составляет труда.
Применение варистора
Варисторы применяются в большинстве бытовой электроники по всему миру. Их можно встретить практически в любой электронике. Они есть и в автомобильной электронике, в сотовой технике и бытовой, сетевых фильтрах и компьютерном железе. Кстати говоря, хороший блок питания, от китайского отличается наличием варистора у первого. Поэтому, хороший блок питания куда более живуч и ремонтопригоден.
Варистор в блоке питания
Умельцы, при сборе своих подделок из светодиодных ламп также используют варисторы. А особые умельцы умудряются размещать их в розетках и вилках. Что только не придумаешь для обеспечения защиты своей электроники, если в доме проблема со скачками напряжения. Сфера их применения обширна. Это могут быть и установки с напряжением 20кВ и с напряжением в 3В. Это может быть сеть с переменным током, а может быть и с постоянным. Воистину, варисторы можно встретить практически везде.
Так какие же варистор характеристики имеет?
Как правило, для описания варистора используют вот такие параметры:
Емкость варистора в закрытом состоянии. Во время работы её значение может меняться. При особенно большом токе – уменьшается практически до нуля. Обозначается как Со.
Максимальная энергия в Джоулях, которую может поглотить варистор за один импульс. Обозначается W. Максимальное значение импульсного тока, при 8/20мс. Обозначается как Iрр. Среднее квадратичное значение переменного напряжения в цепи. Обозначается как Um. Предельное напряжение при постоянном токе. Обозначается как Um=. Для приблизительных расчетов рабочего напряжения советуем использовать значение Un не больше 0,6 с переменным током и 0,8 с постоянным.
В сетях 220В используют варисторы с минимальным классификационным напряжением (Un) от 380 до 430 В. Не следует забывать и о емкости варистора при подборе. Как правило, она зависит от размера варистора. Так, варистор TVR 20 431 имеет емкость 900пФ, а TVR 05 431 – 80 пФ. Эти величины всегда можно подглядеть в справочном материале.
На схемах варистор обозначается следующим образом
RU – это обозначение самого варистора. Цифра рядом с RU – номер по порядку. То есть, какое это по счету варистор в цепи. Буква U снизу слева у косой, проходящей через варистор, означает, что данный элемент имеет способность менять напряжение. Также, зачастую на схемах указывается маркировка варистора. О маркировке и её расшифровке мы поговорим ниже.
Так обозначают варистор на схемах
Статическое сопротивление варистора
При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.
Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.
Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:
Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона. Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.
Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.
При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.
Это интересно: 4 и 5 группа допуска по электробезопасности — излагаем все нюансы
Главные свойства
В общем виде речь идет о своеобразном шунте, замыкающем на себе энергию, которая в избытке образуется при повышенном напряжении. Материал изготовления обычно служит оксид цинка или распространенный вариант с карбидом кремния. Для последнего характерны более низкая нелинейность характеристик. Элементы низковольтного типа функционируют в таком диапазоне – 2-200 В. А вот высоковольтные аналоги применяются при параметрах напряжения до 20 000 В.
Несмотря на внешнюю схожесть по своей внутренней конструкции варистор кардинально отличается от конденсатора.
На схеме обозначены следующие компоненты:
- А – паре электродов, имеющих форму диска;
- В – расположенные внутри кристаллы оксида цинка;
- С – изготовленная на основе эпоксидов полупроводниковая оболочка;
- D – изолятор из керамического материала;
- Е – рабочие выводы.
Порог срабатывания элемента напрямую зависит от содержания в его изоляционном керамическом слое оксида цинка. Параметры сопротивления при переходе напряжения за допустимый порог мгновенно снижаются. При этом показатели тока повышаются. Образующуюся в этот период тепловая энергия рассеивается в окружающем воздухе.
Краткосрочные скачки напряжения благодаря такому принципу действия не станут причиной выхода из строя бытовой техники. При значительном по времени импульсе возможно перегревание с последующим разрушением варистора. За несколько долей секунды в большинстве случаев успевает сработать предохранитель из плавкого материала.
Изложенная информация подтверждает необходимость, после каждой замены предохранителя, выполнять визуальный осмотр и тестирование с помощью мультиметра находящегося в составе схемы варистора. Небольшие дефекты в элементе при последующей эксплуатации приводят к поломке электронного устройства.
Характеристики
Варистор представляет собой полупроводниковый резистор с нелинейной вольт-амперной характеристикой, ее график показан на рисунке 2.
Рис. 2. Типичные вольт-амперные характеристики: А – варистора, В – обычного резистора
Как видно из графика, когда напряжение на полупроводнике достигает порогового значения, резко увеличивается сила тока, что вызвано понижением сопротивления. Эта характеристика позволяет использовать варистор в качестве защиты от кратковременных скачков напряжения.
Принцип работы варистора
Варисторы, Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.
В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.
Рис. 1. Вольт-амперная характеристика варистора.
Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.
Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.
Достоинством варисторов, по сравнению с газоразрядниками, являются:
- большее быстродействие;
- безынерционное отслеживание перепадов напряжений;
- выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
- имеют более низкую стоимость.
Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:
- для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
- для электростатической защиты входов радиоаппаратуры;
- для защиты от электромагнитных всплесков в мощных индуктивных элементах;
- как элемент искрогашения в электромоторах и переключателях.
Варисторы 07К…20К
Варистор серии 07K, 10K, 14K, 20K – оксидно-цинковый защитный элемент, обладающий способностью мгновенного изменения собственного сопротивления под воздействием подаваемого напряжения. Характерные резко выраженные нелинейные и симметричные вольтамперные характеристики предоставляют возможность эксплуатации варисторов в цепях постоянного, переменного и импульсного тока.
Принцип работы варистора заключается в его способности в считанные наносекунды (до 25 нс) понижать собственное сопротивление до отметки в несколько Ом при воздействии напряжения, превышающего номинальное значение – напряжения срабатывания, ток срабатывания при этом может достигать 100А.
В обычном состоянии сопротивление варистора достигает нескольких сотен МОм, а поскольку подключают варисторы параллельно цепи, то ток через него не проходит и он выступает в роли диэлектрика. Импульсный скачок приводит варистор в действие, понижая его сопротивление – происходит короткое замыкание и перегорает плавкий предохранитель, который должен устанавливаться в обязательном порядке перед варистором, и цепь размыкается.
В момент срабатывания происходит шунтирование излишней нагрузки, поглощаемая энергия (до 282 Дж при импульсе тока 2,5 мс) рассеивается в виде теплового излучения. Габаритные размеры варистора при этом играют значительную роль – общая площадь поверхности варистора имеет пропорциональное влияние на возможность гашения импульса напряжения без разрушения самого устройства.
Варисторы серии 07K, 10K, 14K, 20K имеют форму диска (дисковые варисторы) различной толщины с однонаправленными проволочными выводами радиального типа. Изготавливаются представленные варисторы методом прессования порошкообразного оксида цинка (ZnO).
На корпусе варисторов нанесена маркировка с указанием номинального классификационного напряжения и соответствующего допуска по напряжению (±10%). На образцах варисторов импортного производства при маркировке допуска используют символьное обозначение, например, буква K обозначает допуск ±10%, буква M – допуск ±20%.
Устанавливаются варисторы параллельно защищаемому устройству с помощью пайки выводов. Для достижения максимального уровня защиты рекомендуется использование двух одинаковых варисторов, подключенных параллельно друг другу, и дополнительного плавкого предохранителя, устанавливаемого последовательно перед варисторами.
Применяются предоставленные варисторы 07K, 10K, 14K, 20K для защиты элементов от перенапряжения в источниках и системах электропитания, бытовой и военной технике, телекоммуникационном и измерительном оборудовании.
Подробные характеристики, расшифровка маркировки, габаритные размеры, общее устройство варисторов 07K, 10K, 14K, 20K указаны ниже. Наша компания гарантирует качество и работу варисторов в течение 2 лет с момента их приобретения; предоставляются сертификаты качества.
Свойства
Так как при переключении варистора не возникает других сопутствующих токов, то его используют как устройство защиты от импульсных перенапряжений.
Он выступает в роли шунта, замыкая на себя всю избыточную энергию от напряжения, превышающего пороговое. Изготавливают варисторы из карбида кремния или оксида цинка. Нелинейность характеристик последнего выше.
Низковольтные варисторы работают в диапазоне от 3 до 200 В, а высоковольтные могут использоваться при напряжениях до 20000 В.
При превышении пороговых напряжений через варистор протекают токи в тысячи и десятки тысяч ампер, но благодаря маленькой длительности импульса (от нескольких наносекунд до десятков микросекунд) выделяемая тепловая энергия успевает рассеяться и прибор остается в рабочем состоянии.
TVR10471 Datasheet PDF — TKS
Part Number | TVR10471 | |
Description | (TVR Series) Zinc Oxide Varistor | |
Manufacturers | TKS | |
Logo | ||
There is a preview and TVR10471 download ( pdf file ) link at the bottom of this page. Total ( 43 pages ) |
Preview 1 page
No Preview Available !
TVR-SERIES Part Number Code 180 18x10V 241 24x101V 102 10x102V :: |
Preview 5 Page |
Information | Total 43 Pages |
Link URL | |
Product Image and Detail view | 1. — 470V, Metal Oxide Type |
Download |
Share Link :
Electronic Components Distributor
SparkFun Electronics | Allied Electronics | DigiKey Electronics | Arrow Electronics |
Mouser Electronics | Adafruit | Element14 | Chip One Stop |
Featured Datasheets
Part Number | Description | Manufacturers |
TVR10470 | The function is (TVR Series) Zinc Oxide Varistor. | TKS |
TVR10471 | The function is (TVR Series) Zinc Oxide Varistor. | TKS |
TVR10471 | The function is (TVR Series) Zinc Oxide Varistor. | TKS |
Quick jump to:
TVR1 |
Справочник и маркировка варисторов
Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.
Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.
Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.
Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.
Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04
При его применении важно соблюдать полярность
Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.
На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.
Каждый электронный прибор, который включен в сеть нуждается в защите от превышения пороговых значений тока или напряжения. Для защиты по току применяют различные плавкие предохранители и автоматические выключатели, а вот для предохранения устройства от перенапряжения чаще всего применяют варисторы. В данной статье мы рассмотрим принцип работы варистора, его характеристики, достоинства и недостатки этого электронного компонента.
Выбор варистора
Чтобы эффективно и гарантированно защитить вашу технику, к выбору варистора необходимо подойти с умом.
Как правило, для защиты бытовой техники используют варисторы с пороговым значением напряжения от 275 до 430 В. Особо углубляться в подбор варисторов с учетом других значений (емкость и т.п) мы вдаваться не будем. Тут есть множество нюансов, которые в формате этой статьи просто не удастся рассмотреть. Для более точного подбора варистора можем посоветовать использование справочников по варисторам. В них указаны все характеристики, которыми обладает тот или иной варистор. Что позволит вам выбрать наиболее подходящий для ваших целей и задач.
Еще одним важным параметром при выборе варистора является скорость срабатывания. Как правило, у большинства варисторов она составляет около 25 нс. Но не всегда этого хватает.
Тогда вам подойдут варисторы с меньшим временем срабатывания. Недостижимым идеалом по скорости срабатывания являются варисторы, изготовленные по технологии многослойной структуры SIOV-CN. Их скорость срабатывания может составлять менее 1 не.
Такие варисторы необходимы для защиты от статического электричества. В бытовой технике, такие варисторы практически не применяются.
Слышали, наверно, про случаи, когда сразу у множества людей сгорала электроника? Это происходит как раз из-за того, что по проводам идет только фаза. Варистор предохраняет и от этого.
Информация о варисторах
Для новичков, немного расскажу о варисторах. Варистор — это такой тип резисторов, которые меняют свое сопротивление, в зависимости от напряжения, которое к них подается.
Покажу на примере.
Схема работы варистора при нормальном напряжении
Предположим, что в схеме установлен варистор, к примеру который начинает срабатывать от 270 вольт. Пока напряжение ниже данного значения, сопротивление варистора слишком велико, и напряжение свободно питает плату, минуя варистор.
Схема, как отрабатывает варистор при завышенном напряжении
При подаче около 300 вольт, сопротивление варистора резко уменьшается, после чего он начинает принимать всю нагрузку на себя. При этом, завышенное напряжение не попадает на схему, в чем и проявляется эффект защиты платы.
Когда варистор срабатывает, то вся нагрузка передается на предохранитель, после чего тот сгорает, и спасает плату от дальнейших перегрузок.
Так и случилось в моем примере. Варистор сгорел, чем спас плату блока пттания. Номинал варистора в моей плате был TVR10431. Это варистор, классификационное напряжение которого является 430 вольт. По даташиту, данный варистор начинает срабатывать при напряжении 270 вольт переменного тока.
Теперь, когда мы разобрались с основами, можно перейти к проверке варистора
Определяем работоспособность элемента (пошаговая инструкция)
Для данной операции нам потребуются следующие инструменты:
- Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
- Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
- Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
- Канифоль и припой.
- Мультиметр или другой прибор, позволяющий измерить сопротивление.
Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:
- Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
- Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
- Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой.
Варистор в силовой части БП
- Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей.
Варистор со следами повреждений
- Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
- Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору.
Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым
- Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.
Назначение и характеристики
Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.
Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.
Принцип работы элемента подразумевает его включение параллельно цепи питания. После его срабатывания и уменьшения напряжения на входе он самовосстанавливается до первоначального значения. Из-за малой инерционности это происходит мгновенно.
Основные параметры
Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.
- Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
- P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
- W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
- Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
- Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.
Но на практике особое внимание уделяется в основном параметру Um. Эта характеристика показывает уровень напряжения, при котором происходит пробой элемента и начинает течь ток
Виды устройств
Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.
Маркировка элементов
Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:
- S — материал, из которого изготовлен варистор;
- 6 — диаметр корпуса элемента, указывается в миллиметрах;
- K — величина допуска отклонения;
- 210 — значение рабочего напряжения, выраженное в вольтах.
На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.
Изготовление варистора
Объясняется все это устройством варистора. Состоит варистор из полупроводника и различных материалов для связывания. Распространена такая связка – карбид кремния и эпоксидная смола. Их сплавляют при высоких температурах. Затем, поверхность варистора покрывается металлом и припаиваются выходы.
Конструкция варистора
Способность проводить большое напряжение через себя варистором обеспечивается материалом – кремнием. При нагревании кристаллы карбида кремния значительно уменьшают свое сопротивление. И ток может спокойно проходить по ним.
Однако, все большее распространение получают варисторы из оксида цинка. Они проще в изготовление и могут пропускать через себя более высоковольтные импульсы. Техника их производства схожа с производством керамических варисторов.
Варисторы бывают различных форм – колбочки, палочки, диски. Все зависит от производителя.
Разные формы варисторов
Проверка на исправность
Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:
- Отвертка.
- Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
- Паяльник, олово и канифоль.
- Мультиметр для диагностики радиокомпонентов.
- Увеличительное стекло для просмотра маркировки.
Вам это будет интересно Расчет сопротивления параллельного соединения резисторов
После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.
Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.
Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:
- Измерение сопротивления.
- Поиск неисправности, исходя из технических характеристик элемента.
В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.
Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.
Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.
Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).
Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.