Таблица удельного сопротивления проводников стали

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна. Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна — временного сопротивления при растяжении (МПа*10 -1 ). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения предела прочности серого чугуна при растяжении в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм 2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Предел прочности высокопрочного чугуна. Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм 2 (или от 350 до 1000 МПа).

Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. – М.: Металлургия, 1982. – 480 с.
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. — ISBN 5-217-00241-1
  3. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  4. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  5. Мешков Ю.Я. Физика разрушения стали и актуальные вопросы конструкционной прочности // Структура реальных металлов: Сб. науч. тр. — Киев: Наук. думка, 1988. — С.235-254.
  6. Френкель Я.И. Введение в теорию металлов. Издание четвёртое. — Л.: «Наука», Ленингр. отд., 1972. 424 с.
  7. Получение и свойства чугуна с шаровидным графитом. Под редакцией Гиршовича Н.Г. — М.,Л.: Ленинградское отделение Машгиза, 1962, — 351 с.
  8. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.

Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>> —>

Источник

Примечания[ | ]

  1. Электрическое сопротивление — статья из Большой советской энциклопедии.
  2. Василий Петров – основоположник отечественной электротехники // /infourok.ru.
  3. CRC Handbook of Chemistry and Physics, 92nd Edition. — Ed. William M. Haynes. — 2011. — ISBN 978-1-4398-5511-9
  4. Б. М. Яворский, А. А. Детлаф. — Справочник по физике для инженеров и студентов вузов. — М.: Наука, 1968. — 939 с.
  5. Иногда в англоязычной литературе сименс называют mho («перевёрнутое» название обратной единицы ohm), соответственно для СГСЭ и СГСМ — statmho (=statsiemens) и abmho (=absiemens).
  6. 1 кОм в модели, принятой в стандарте IEEE Std 80 Архивная копия от 23 августа 2011 на Wayback Machine
  7. Новиков С. Г. Действие электрического тока на человека(неопр.) (недоступная ссылка). Московский энергетический институт. Дата обращения 2013-25-04. Архивировано 19 июня 2014 года.

Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.

Мате­риалы высокого сопротивления должны быть высокостабильными, иметь удельное сопротивление не менее 0,3 мкОм•м, очень низкий ТКρ и малую термо-ЭДС относительно меди. Металлические сплавы, образующие твердые растворы, по на­значению разделяют на сплавы резистивные и нагревостойкие.

Резистивные сплавы широко используют в производстве прово­лочных резисторов, шунтов, реостатов, термопар и т.д. Самые рас­пространенные среди них — медно-никелевые сплавы: манганин, константан и др.

Манганин — это сплав, состоящий из меди Си 85—89%, никеля Ni 2,5—3,5% и марганца Мп 11,5—13,5%. Примеси не должно быть более 0,9%. Удельное сопротивление манга­нина составляет 0,42—0,48 мкОм-м, предельно допустимая температу­ра 200°С. Хо­рошо протягивается в тонкую проволоку диаметром от 0,02 до 6,0 мм, а микро­провод в стеклянной изоляции производят диаметром в несколько мкм. Хорошо прокатывается в ленту толщиной 0,01—1 мм (ширина ленты 10—300 мм). Манганин применяют для изготовления образцовых (проволочных) резисторов, шунтов и некоторых измерительных приборов.

Константин — сплав, содержащий 56—59% меди Си, 39—41% никеля Ni и 1—2% марганца Мп, примеси — не более 0,9%. Удельное сопротивление р = 0,48—0,52 мкОм•м, значение ТКр близ­ко к нулю и обычно имеет отрицательный знак. Может использоваться в реостатах и нагревательных элементах при температурах до 450—500°С. При быстром (3 с) нагреве константановой проволоки на воздухе до температуры 900°С на ее поверхности обра­зуется тонкая пленка оксида, обладающая электроизоляционными свойствами.

Нагревостойкие сплавы используют для изготовления нагрева­тельных элементов. К ним относятся сплавы на основе железа, нике­ля, хрома и алюминия. Высокая нагревостойкость этих сплавов обусловле­на образованием на их поверхностях сплошной плотной оксидной пленки.

Нихромы — это сплавы системы Fe—Ni—Cr, со­держащие Ni 55—78%, Cr 15—25%, Mn 1,5 и остальное Fe; удельное сопротивление равно 1,0—1,2 мкОм-м. При повышенном содержа­нии железа эти сплавы называют ферронихромами. Нихромы облада­ют высокой технологичностью, легко протягиваются в тонкую про­волоку и легко прокатываются в тонкую ленту. Это жаростойкие сплавы. Вы­сокая нагревостойкость нихромов объясняется близкими значения­ми ТКЛР сплавов и их оксидных пленок.

Фехрали и хромали — это жаростойкие сплавы системы Fe—Cr—A1, содержащие с своем составе хрома Сг 12—15%, алюминия А1 3,5—5,5%, марганца Мп 0,7%, никеля Ni 0,6% и ос­тальное железо Fe; удельное сопротивление равно 1,2—1,4 мкОм•м. Эти сплавы менее технологичны, более твердые и хрупкие, чем ни­хромы. Поэтому из них получают проволоку и ленты с поперечным сечением большим, чем из нихромов. Отличаются высокой стойкостью к химиче­скому разрушению под действием различных газообразных сред при высоких температурах.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов. Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов. Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.


Медный и алюминиевый кабель соединяют через стальной переходник, чтобы предотвратить электрохимическую коррозию

Термисторы

Определение 1

Приборы, которые основываются на зависимости величины сопротивления от температуры, называются термисторами.

Для их производства применяют полупроводники, обладающие существенной величиной отрицательного сопротивления. Их изготавливают в форме цилиндрических стержней, бусин, нитей, располагаемых в баллончиках из стекла, керамики или металла с изоляцией.

Параметры, характеризующие термисторы:

  • наличие сопротивления с t=20 °C;
  • температурный коэффициент сопротивления при t=20 °C;
  • время тепловой инерции – временной промежуток, за который сопротивление термистора изменяется до определенной величины;
  • максимальная температура эксплуатации;
  • теплоемкость.

По предназначению термисторы классифицируют на:

  • Измерительные. Применяют для получения данных о температуре и влажности воздуха. Ток, пропускаемый через него, имеет малую величину, поэтому не способен вызвать заметный разогрев термистора. Температура меняется вместе с температурой окружающей среды.
  • Прямого подогрева. Изменение сопротивления происходит за счет джоулева тепла. Его использование способствует стабилизировать напряжение при существенных колебаниях и небольших токах, как в телефонных линиях. Применение позволяет поддерживать постоянство сопротивления электросетей. (Термисторы обладают отрицательным температурным коэффициентом, а остальные металлические элементы – положительным). Они способны заменить движковые реостаты. Данный тип термисторов способен производить нарастание тока в цепи.
  • Косвенного подогрева. Нагревание производится за счет внешнего источника. Применяются в качестве сигнализации о перегреве отдельных частей машины.

Физика явления[ | ]

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости

, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления

материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

R = ρ ⋅ l S , {\displaystyle R={\frac {\rho \cdot l}{S}},}

где ρ — удельное сопротивление

вещества проводника, Ом·м,l — длина проводника, м, аS — площадь сечения, м².

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Ослабление винтов клеммной колодки вследствие повышения температуры

Для клеммных зажимов, которые должны выдерживать высокие температуры, влияние температуры является критически важным параметром, который недостаточно учтен в действующих стандартах. Наиболее критическим моментом является ослабление клеммных зажимов. Этот фактор способствует увеличению сопротивления контакта между клеммным зажимом и проводом, что приводит к локальному нагреву вплоть до воспламенения находящихся рядом горючих материалов. Такое ослабление имеет четыре причины:

Деформация клеммного зажима при его расширении ослабляет затяжку

. Такая деформация, как правило, обратима, когда температура падает, и может быть компенсирована за счет упругости клеммного зажима или пружины, расположенной между зажимным винтом и проводом.

Удельное сопротивление разных материалов

Важно отметить, что сопротивление у металлических монокристаллов с металлами и сплавами разные. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства

Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью.

Интересно, что под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в проном, антикоррозийном и легком составе, как правило, равна не больше 0,1%.

Обратите внимание! Что касается отжига алюминия, свинца или железа, значение в таких же условиях вырастает в 2 раза, несмотря на наличие примесей в количестве 0,5% и необходимости большей энергии на плавление. Таблица значений составов при температуре 20 градусов Цельсия

Таблица значений составов при температуре 20 градусов Цельсия

В целом, удельное электросопротивление представляет собой физическую величину, которая характеризует способность вещества препятствовать тому, чтобы проходил электроток. По СИ измеряется в омах, перемноженных на метры. Зависит от увеличения температуры вещества. Отыскать значение можно по формуле соотношения общего сопротивления и площади поперечного сечения, поделенного на длину проводника. Что касается удельного сопротивления сплавов, согласно изучениям разных ученых состав их непостоянный, может быть изменен под термообработкой.

Расчетные сопротивления листового проката и труб

Таблица В.5 — Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе листового, широкополосного универсального и фасонного проката

Сталь по ГОСТ 27772 Толщина проката*, мм Нормативное сопротивление** проката, Н/мм 2 Расчетное сопротивление*** проката, Н/мм 2
Ryn Run Ry Ru
С235 От 2 до 8 235 360 230/225 350/345
С245 » 2 » 20 245 370 240/235 360/350
Св. 20 » 30 235 370 230/225 360/350
С255 От 2 » 20 245 370 240/235 360/350
Св. 20 » 40 235 370 230/225 360/350
С285 От 2 » 10 275 390 270/260 380/370
Св. 10 » 20 265 380 260/250 370/360
С345 От 2 » 20 325 470 320/310 460/450
Св. 20 » 40 305 460 300/290 450/440
» 40 » 80 285 450 280/270 440/430
» 80 » 100 265 430 260/250 420/410
С345К От 4 » 10 345 470 335/330 460/450
С375 » 2 » 20 355 490 345/340 480/465
Св. 20 » 40 335 480 325/320 470/455
С390 От 4 » 50 390 540 380/370 525/515
С440 » 4 » 30 440 590 430/420 575/560
Св. 30 » 50 410 570 400/390 555/540
С590, С590К От 10″ 40 590 685 575/560 670/650
* За толщину фасонного проката следует принимать толщину полки.

** За нормативное сопротивление приняты гарантированные значения предела текучести и временного сопротивления, приводимые в государственных стандартах или технических условиях. В тех случаях, когда эти значения в государственных стандартах или технических условиях приведены только в одной системе единиц — (кгс/мм 2 ), нормативные сопротивления (Н/мм 2 ) вычислены умножением соответствующих величин на 9,81 с округлением до 5 Н/мм 2 . По согласованию с организацией — составителем норм допускается применение значений нормативных сопротивлений, отличных от приведенных в настоящей таблице В.5.

*** Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, определенные в соответствии с 3.2, с округлением до 5 Н/мм 2 . В числителе представлены значения расчетных сопротивлений проката, поставляемого по ГОСТ 27772 (кроме стали С590К) или другой нормативной документации, в которой используется процедура контроля свойств проката по ГОСТ 27772 (γm=1,025), в знаменателе — расчетное сопротивление остального проката при γm=1,050.

Таблица В.6 — Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе труб

Марка стали ГОСТ Толщина стенки, мм Нормативное сопротивление, Н/мм Расчетное сопротивление, Н/мм
ВСт3кп, ВСт3пс, ВСт3сп ГОСТ 10705 До 10 225 370 215 350
ВСт3пс4, Ст3сп4, 20 ГОСТ 10706 4-15 245 370 235 350
ГОСТ 8731 4-36 245 410 225 375
Примечания

1 Нормативные сопротивления для труб из стали марки 09Г2С по ГОСТ 8731 устанавливаются по соглашению сторон в соответствии с требованиями этого стандарта; расчетные сопротивления — согласно 5.2 настоящих норм.

Источник

Расчетное сопротивление стали

наверное, мой вопрос глуп. но я не понимаю, am glad если объясните Почему в новом металлическом СНиПе II-23-81* в конце даны нормативные и расчетные сопротивления универсального и фасонного проката, а в старом — кроме них еще и нормативные/расчетные сопротивления ПРОФИЛЕЙ по группе конструкций .

Например, для стали 09Г2С Ry=3200кг/см^2, но для ТРУБЫ из этой стали Ry=2550кг/см^2 как это так? Ведь трубы — это тоже прокат.. мне так казалось.

и, вроде, новый СНиП отменил старый, так почему же вся контора считает трубы на изгиб при Ry=2550кг/см^2 ?? Я — не против, запас — дело хорошее. Но, когда с завода приходят тех. характеристики на трубы и там какая-то хитрая сталь, — зато даны предел текучести и временное сопротивлени, что мне делать? рассчитывать по их данным , деля на гамма М или понижать еще, в расчете на неведомые мне причины по которым трубы несут не 3200 , а 2550 .

Ох, странная штука: у меня в руках 2 СНиПа , оба II-23-81*, токо один издания 1990года, а другой — 1988.

тот, кот 1990 — там нет 09Г2С, там в табл. 51* на стр. 64 С345 и Ry=3200,

а тот, кот 1988 — там там в табл. 51* на стр. 66 (продолжение таблицы, начало на с. 63) — трубы из 09Г2С и там Ry=2550

Воздействие температур на замеры

Некоторые проводники при низких или высоких температурах могут оказывать существенное воздействие на показатели измерительной аппаратуры. Например, если подсоединить к гальваническому элементу свернутую по спирали проволоку и затем подключить к данной цепи амперметр, будет заметно, как уменьшаются показания измерительного прибора по мере нагревания проводника.

Силе тока присуща обратно пропорциональная зависимость от противодействия. Можно прийти к заключению, что вследствие повышения температуры электропроводимость металла сокращается. Такими свойствами обладают все металлические проводники в той или иной степени, однако у отдельных сплавов изменения электропроводимости практически не происходят.

Интересно отметить, что у жидких проводников и некоторых твердых неметаллов имеется тенденция к уменьшению своего сопротивления при повышении температуры. Но и это свойство металлов ученым удалось обратить в свою пользу. Располагая данными о температурном коэффициенте сопротивления (α) при нагревании отдельных материалов, возможно определять наружную температуру.

Металлопленочные резисторы обладают отличными свойствами термостабильности. Это можно достичь не только благодаря низкому удельному сопротивлению материала, но и благодаря механическому устройству самого терморезистора. Для производства резисторов используется большое количество разнообразных сплавов и металлов.

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением

и обозначается греческой буквойρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r

– сопротивление проводника в омах;ρ – удельное сопротивление проводника;l – длина проводника в м;S – сечение проводника в мм².

Пример 1.

Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2.

Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3.

Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4.

Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5.

Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления

и обозначается буквой α.

Если при температуре t

0 сопротивление проводника равноr 0 , а при температуреt равноr t , то температурный коэффициент сопротивления

Примечание.

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t

r t

=r 0 .

Пример 6.

Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t

=r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7.

Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Удельное сопротивление различных проводников

Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:

металл удельное сопротивление, Ом·м температурный коэффициент, 1/°С* 10^-3
медь 1,68*10^-8 3,9
алюминий 2,82*10^-8 3,9
железо 1*10^-7 5
серебро 1,59*10^-8 3,8
золото 2,44*10^-8 3,4
магний 4,4*10^-8 3,9
олово 1,09*10^-7 4,5
свинец 2,2*10^-7 3,9
цинк 5,9*10^-8 3,7

Как видно из таблицы, лучший проводник — это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.

В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:

А этот интересный график показывает сопротивление сплавов Цинк — магний:

В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:

сплав удельное сопротивление
манганин 4,82*10^-7
константан 4,9*10^-7
нихром 1,1*10^-6
фехраль 1,2*10^-6
хромаль 1,2*10^-6

Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля.

Что касается углеродистых сталей, то оно составляет примерно 1,7*10^-7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро — в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

Сравнение проводимости разных видов стали

Характеристики стали зависят от ее состава и температуры:

  • Для углеродистых сплавов сопротивление довольно низкое: оно составляет 0,13-0,2 мкОм/м. Чем выше температура, тем больше значение;
  • Низколегированные сплавы имеют более высокое сопротивление — 0,2-0,43 мкОм/м;
  • Высоколегированные стали отличаются высоким сопротивлением — 0,3-0,86 мкОм/м;
  • Благодаря высокому содержанию хрома сопротивление хромистых нержавеющих сплавов равняется 0,5-0,6 мкОм/м;
  • Хромоникелевые аустенитные стали являются нержавеющими и благодаря никелю имеют высокую сопротивляемость — 0,7-0,9 мкОм/м.

Медь стоит на втором месте по степени электропроводимости: она отлично пропускает электрический ток и повсеместно используется при изготовлении проводов. Не реже применяют и алюминий: он слабее меди, но дешевле и легче.

Удельное сопротивление — сталь

При переменном магнитном потоке применяется листовая электротехническая сталь — специальная сталь с добавкой кремния, который увеличивает удельное сопротивление стали, но несколько затрудняет ее обработку.

Наивыгоднейшая величина сечения сердечника реле определяется при выборе оптимальной величиной площади полюсного наконечника из условия для наибольшей условной работы по формуле ( 4 — 85), так как удельное сопротивление стали магнитопро-вода Кж зависит от сечения сердечника.

Кривые зависимости силы притяжения реле типа РКН от диаметра полюсного наконечника при различных ампервитках и ходе якоря 0 8 мм.

Наивыгоднейшая величина диаметра ( сечения) сердечника может быть определена при выборе оптимальной величины площади полюсного наконечника из условия для наибольшей условной работы согласно формуле ( 4 — 98), так как удельное сопротивление стали магнитопровода Rm зависит от сечения сердечника.

Сопротивление стали при переменном токе определено по диаграмме Л. Р. Неймана для t 20 С. Удельное сопротивление стали при постоянном токе принято равным 140 ом-мм / км.

Электропроводность стали, даже с малым количеством примесей, сравнительно невелика. Это удельное сопротивление стали относится к прохождению через нее постоянного тока; при переменном токе, благодаря магнитным свойствам стали, активное сопротивление ее и потери мощности в ней еще более возрастают.

Для стали этот коэфициент не является постоянной величиной; зависимость с от Т дана на фиг. При комнатной температуре удельное сопротивление стали изменяется в широких пределах при изменении ее химического состава.

Электротехническая сталь является магнитомягким материалом. Для улучшения ее магнитных характеристик в нее вводят кремний, который повышает величину удельного сопротивления стали, что приводит к уменьшению потерь на вихревые токи. Широко применяют несколько видов электротехнической стали: тонколистовую нелегированную, сортовую нелегированную, тонколистовую, легированную кремнием. Все виды сталей — низкоуглеродистые.

Электротехническая сталь является магнитно-мягким материалом. Для улучшения ее магнитных характеристик в нее вводят кремний, который также повышает величину удельного сопротивления стали, что приводит к уменьшению потерь на вихревые токи.

Вычислить наибольшую температуру в стальной шине размером 100 х 10 мм2, по которой протекает постоянный ток / 1000А, расположенной в спокойном воздухе таким образом, что теплоотдача с ее поверхности в окружающее пространство происходит с одной широкой ее плоскости. Удельное сопротивление стали р 13 — 10 — 8 Ом — м и ее теплопроводность X 40 Вт / ( м-град) принять не зависящими от температуры.

Несмотря на дешевизну, сравнительную распространенность и хорошую механическую прочность, сталь в качестве проводникового материала применяют сравнительно редко. Электропроводность стали, даже с малым количеством примесей, сравнительно невелика. Это удельное сопротивление стали относится к прохождению через нее постоянного тока; при переменном токе благодаря магнитным свойствам стали активное сопротивление ее и потери мощности в ней еще более возрастают.

Электрическое сопротивление соединения двух круглых пластин определяется выражением Rl / 2 ak, где а — радиус соединения и k — удельная проводимость металла. При нагрузке 30 кГ сопротивление равно 5 — 10 — 5 Ом. Предел текучести и удельное сопротивление стали соответственно равны 60 кГ / мм2 и 4 — 10 — 5 Ом / см. Рассчитайте число контактов, предполагая, что их проводимости — аддитивные величины.

Сталь с низким содержанием кремния имеет меньшую магнитную проницаемость и большие магнитные потери, а также большое магнитное насыщение. Стали с высоким содержанием кремния имеют меньшие потери на вихревые токи и гистерезис и высокую магнитную проницаемость в слабых и средних полях. Присадка кремнием снижает плотность и повышает удельное сопротивление стали.

Для стали этот коэфициент не является постоянной величиной; зависимость с от Т дана на фиг. При комнатной температуре удельное сопротивление стали изменяется в широких пределах при изменении ее химического состава. При этой температуре обе стали имеют одинаковую структуру ( аустенит) и в связи с этим — близкие электрические свойства. Поэтому удельное сопротивление стали при комнатной температуре не является вполне точным показателем интенсивности выделения тепла при ее сварке.

Таблица удельного электрического сопротивления некоторых металлов

Вид провода ρ при 20℃, Ом-м
Серебряный 1,59×10⁻⁸
Медный 1,67×10⁻⁸
Золотой 2,35×10⁻⁸
Алюминиевый 2,65×10⁻⁸
Вольфрамовый 5,65×10⁻⁸
Никелевый 6,84×10⁻⁸
Железный 9,7×10⁻⁸
Платиновый 1,06×10⁻⁷
Стальной 1,6×10⁻⁷
Свинцовый 2,06×10⁻⁷
Дюралюминиевый 4,0×10⁻⁷
Нихромовый 1,05×10⁻⁶

Удельное сопротивление абсолютно независимо от формы и размеров проводника, однако варьируется в широком диапазоне при отклонении температуры от принятого за стандартное значения, равного 20 градусам Цельсия. Практическим электротехническим путем доказано, что увеличение температуры повышает сопротивляемость металлов течению тока, с обратной стороны — вместе со снижением температуры она снижается. Примерно подсчитать, насколько существенным будет изменение, можно с учетом того, что всем металлам присущ почти одинаковый уровень прироста убыли данной величины, в среднем составляющий 0,4% на 1°С.

Вам это будет интересно Цифровой мультиметр


График сопротивления

Если же данный показатель нужно определить точно, то можно воспользоваться этой формулой:

ρ = ρ0 x (1 + α x (t — t))

, где ρ и ρ0 — соответственно удельные сопротивления при температурах t и t (20°С, табличное значение), α — температурный коэффициент сопротивления.

Вид провода α
Никелевый 0,005866
Железный 0,005671
Молибденовый 0,004579
Вольфрамовый 0,004403
Алюминиевый 0,004308
Медный 0,004041
Серебряный 0,003819
Платиновый 0,003729
Золотой 0,003715
Цинковый 0,003847
Стальной 0,003
Нихромовый 0,00017

Так, к примеру, найдя в таблицах удельное сопротивление меди при 20 градусах Цельсия и ее температурный коэффициент, можно вычислить, что при нагреве до 100℃ ее сопротивление вырастет на 32%. Практически то же самое будет происходить с удельным сопротивлением алюминиевого кабеля с тем же коэффициентом (0,004). А вот удельное сопротивление стали повысится менее значительно — на 24%.


Нагрев

С увеличением температуры проводник насыщается тепловой энергией, передающейся всем атомам вещества. Этим обуславливается повышение интенсивности их теплового движения. Последний фактор и приводит к повышению сопротивляемости движению свободных электронов в определенном направлении, поскольку возрастает вероятность встречи свободных электронов с атомами. Когда температура снижается, меньшее количество атомов может препятствовать направленному движению электронов, следовательно, происходит обратное. В результате колоссального спада температуры возникает интереснейшее явление, называемое «сверхпроводимостью металлов»: сопротивляемость уменьшается до нуля в условиях, близких к абсолютному нулю (-273,15℃). В таких кондициях атомы металла замирают на своих позициях, и электроны движутся без каких-либо препятствий.


Сверхпроводимость