Оглавление
- Проблема третья – сильно зашумленное изображение
- Рис.7
- Рис.2
- EEPROM
- Микропроцессор
- Определение контактов соединения инвертора с блоком питания
- Собираем самодельный телевизор.
- Рис.8
- DDC- EEPROM
- Определение контактов соединения инвертора с блоком питания
- Телевизионные скалеры
- Технические характеристики
- Из чего состоит ЖК монитор
- Механические и ультразвуковые аппараты для чистки зубов в пародонтологии
- Телевизионные скалеры
- Этапы стоматологических работ
- Подключение периферии
- Скалер
- Подключение матрицы к скалеру.
- Подключение внешнего инвертора к плате блока питания монитора
- Скалер
- Блок питания
Проблема третья – сильно зашумленное изображение
И тут возникла третья проблема. Изображение смотреть невозможно – оно под помехами. Управление штатными настройками не помогает. Изображение вот такое (Рисунок 4).
Рисунок 4. Изображение с помехами.
В Интернете нахожу, что в скалере есть инженерное меню (!). Для вызова на экран инженерного меню необходимо в режиме «Меню» ввести с пульта дистанционного управления код «1147». Ссылка здесь: https://mysku.ru/blog/china-stores/30512.html Спасибо, доброму человеку, сделавшему эту публикацию!
Вхожу в режим «Меню» с пульта дистанционного управления (Рисунок 5).
Рисунок 5. Режим «Меню»
Набираю на пульте волшебный код «1147». Открывается «Инженерное меню» (Рисунок 6).
Рисунок 6. Инженерное меню.
Открываю раздел меню «Конфигурация матрицы» («PANEL CONFIG»). Меняю значение параметра «TI MODE» на 10 (было 11). Экран засветился чистым синим цветом.
Рисунок 7. Конфигурация матрицы.
А при выходе из инженерного меню получилось отличное изображение телевизионной передачи.
Рис.7
3) Третий вариант характеризуется наличием на основной плате MAIN BOARD всего одной «активной» микросхемы. Под термином» активная микросхема» мы подразумеваем микросхему, имеющую собственную систему команд, программируемую под выполнение различных функций и способную выполнять какую-либо обработку сигналов. В некоторых мониторах (например, в FLATRON L1730B и L1710S), мы видим всего одну такую микросхему, которая совмещает в себе и функции микропроцессора и функции скалера. Так как подобные микросхемы могут использоваться в различных моделях мониторов, и так как в составе микросхемы имеется микропроцессор, для работы которого требуется наличие управляющих кодов, то на плате MAIN BOARD мы найдем еще и микросхему постоянного запоминающего устройства – ПЗУ (ROM). Эта микросхема, которая чаще всего является 8-разрядным ПЗУ с параллельным доступом, содержит управляющую программу для работы комбинированной микросхемы скалера-микропроцессора. Часто микросхема ПЗУ является электрически перепрограммируемой, и поэтому ее часто обозначают, как FLASH. Практически во всех мониторах LG в качестве ПЗУ используются микросхема семейства AT49HF. Блок-схема мониторов с такой схемотехникой представлена на рис.8.
Рис.2
Многие современные мониторы могут использоваться как USB-хаб, к которому могут подключаться различные USB устройства. Поэтому в составе монитора может появиться еще одна печатная плата, соответствующая USB-хабу, но наличие этой платы, естественно, является опциональным.
На основной плате управления располагаются микропроцессор монитора и скалер. Этой платой осуществляется обработка входных сигналов монитора и преобразование их в сигналы управления LCD-панелью. Именной этой платой во многом определяется качество изображения, воспроизводимого на экране монитора. Основное отличие моделей мониторов друг от друга заключается в конфигурации этой печатной платы, в типе установленных на ней микросхем и в их «прошивке».
Плата лицевой панели управления представляет собой узкую печатную плату, на которой расположены только лишь кнопки и светодиод.
Плата источников питания (в документации LG ее обозначают, как LIPS), представляет собой комбинированный источник питания, который состоит из двух импульсных преобразователей: основного блока питания и инвертора задней подсветки. Этой платой формируются все основные напряжения, необходимые для работы и основной платы, и LCD-панели, а также формируется высоковольтное напряжение для ламп задней подсветки. Именно эта печатная плата дает наибольшее количество различных проблем и отказов LCD-мониторов.
Но существует и второй вариант компоновки, при котором кроме LCD-матрицы в мониторе имеется четыре печатные платы:
— основная плата управления и обработки сигналов (Main PCB);
— плата блока питания (Power PCB);
— плата инвертора задней подсветки (Back Light Inverter PCB);
— плата лицевой панели управления.
В данном варианте компоновки блок питания и инвертор задней подсветки представляют собой отдельные печатные платы (рис.3).
EEPROM
В энергонезависимой памяти, в первую очередь, хранятся данные о настройках монитора и заданные пользователем установки. Эти данные извлекаются из EEPROM в момент включения монитора и инициализации микропроцессора. При каждой настройке монитора и установке нового пользовательского значения какого-либо параметра изображения, эти новые значения переписываются в EEPROM, что позволяет их сохранить. В современных мониторах в качестве EEPROM , в основном, применяются микросхемы с последовательным доступом по шине I2C (сигналы SDA и SCL). Это микросхемы типа 24C02, 24C04, 24C08 и т.д.
Микропроцессор
Микропроцессором, который в различных источниках может обозначаться как CPU, MCU и MICOM, осуществляется общее управление монитором. Основными его функциями являются:
— формирование сигналов для включения и выключения задней подсветки;
— управление яркостью ламп задней подсветки;
— настройка режима работы скалера;
— формирование сигналов управляющих работой скалера;
— обработка и контроль входных синхросигналов HSYNC и VSYNC;
— определение режима работы монитора;
— определение типа входного интерфейса (D-SUB или DVI);
— обработка сигналов от лицевой панели управления.
Управляющая программа микропроцессора, как правило, находится в его внутреннем ПЗУ, т.е. эта программ «прошита» в микропроцессоре. Однако часть управляющего кода, и особенно различные данные и переменные хранятся во внешней энергонезависимой памяти, которая представляет собой электрически перепрограммируемое ПЗУ – EEPROM. Микропроцессор имеет прямой доступ к микросхемам EEPROM.
Микропроцессор, как правило, является 8-разрядным и работает на тактовых частотах порядка 12 – 24 МГц. Микропроцессор, на самом деле, является однокристальным микроконтроллером, в составе которого, кроме CPU имеются еще:
— многоцелевые цифровые порты ввода/вывода с программируемыми функциями;
— аналоговые входные порты и цифро-аналоговый преобразователь;
— тактовый генератор;
— ПЗУ;
— ОЗУ и другие элементы.
Определение контактов соединения инвертора с блоком питания
Очень простой способ — купить испорченный монитор, коих в интернете очень много. К примеру, ЖК мониторы с диагональю экрана 17» с различными неисправностями продаются рублей за 500, но после недолгого общения с продавцом достаточно часто можно забрать монитор за каких-нибудь 100 рублей. Согласитесь, неплохая альтернатива приобретению нового инвертора за 500-1000 рублей из поднебесной. Разумеется, всегда есть риск, что в купленном мониторе инвертор также окажется испорченным, но тут уж, как говорится, кто не рискует, тот не пьёт шампанского
Теперь нам необходимо определиться с подключением.Плата инвертора с блоком питания имеет лишь один разъём подключения для коннекта с платой контроллера матрицы. Зная, какие контакты есть на выходе этой платы и платы внешнего инвертора, мы можем соединить их проводами.Рассматриваем плату монитора ViewSonic с блоком питания и видим там схему контактов разъёма
На картинке выше у нас следующая расшифровка разъёма:
- два левых контакта +12 отвечают, как видно из обозначения, за подачу плюса;
- два средних контакта GND отвечают за массу (или минус);
- правый верхний контакт ON/OFF отвечает за подачу сигнала на включение/выключение монитора;
- нижний правый контакт BRIG отвечает за управление монитором.
Теперь посмотрим, что у нас есть на выходе с платы внешнего инвертора
Здесь контакты расположены одним рядом и имеют следующее назначение слева направо:
- два контакта GND — это масса (минус);
- контакт ADJ — это управление подсветкой;
- контакт ON/OFF — включение и выключение подсветки;
- два крайних контакта VCC — соответственно, подача плюса.
В нашем случае мы будем соединять попарно одним проводом контакты плюса и массы, и по одному проводу на включение/выключение платы и на управляющий контакт. В идеале, можно на каждый контакт цеплять отдельный провод.
Если на ваших платах нет схемы с расшифровкой, то вы всегда можете найти даташит (от английского Datasheet, что в дословном переводе обозначает «бумажка с информацией», то есть «документация») используемой вами платы. Подчёркиваем, что удобнее и выгоднее искать документацию именно по модели платы, а не по модели монитора, в которой эта самая плата была установлена
Собираем самодельный телевизор.
Корпус для самодельного телевизора сделал примитивный. У меня был 2мм лист алюминия. Я лишь малость его укоротил болгаркой. Прикрутил по периметру деревянные брусочки.
Затем выпилил пазы под платку с кнопками и платку с индикатором и фотоприемником. Потом прикрутил профильную алюминиевую трубу 20х20 мм. Она выполняет роль усилителя корпуса и экранирует плату скалера он остальной электроники самодельного телевизора.
Корпус самодельного телевизора почти готов.
В местах установки плат наклеил диэлектрические наклейки на всякий случай, хотя воздушный зазор имеется.
Насверлил отверстий в местах установки динамиков. Один получился внизу, а второй нашел свое место сбоку.
Руководствуясь картинкой подключения и маркировкой на самой плате не сложно разобраться что куда подключать.
Проводки от динамиков пришлось припаять к плате, так как нужного разъема у меня не было, а подключение нужно было сделать понадежней.
Устанавливаем динамики на наш самодельный корпус.
На фото выше видно как установлен второй динамик. Инвертор подсветки установлен так, чтобы во первых был по дальше от платы скалера и чтобы шлейф от матрицы свободно дотягивался до инвертора в рабочем положении.
Платка с кнопками заняла свое положение в сделанной для нее прорезе.
Заканчиваем сборку электронной части нашего самодельного телевизора. На фото видно плату с двумя радиаторами — это DC-DC преобразователь. Дело в том, что скалер 3663 работает от 12 вольт, а постоянного электричества у нас на стройке (даче) нет и я делал телевизор для питания от аккумулятора шуруповерта, который номинально выдает 14.4 вольта.
У меня многое заточено для питания от этого аккумулятора. Сам аккумулятор переделка на Li-Ion, подробнее здесь.
Регулируется перемычкой на плате между 3,3-5-12 вольт. Смотрим фотку.
Рис.8
Кроме этих трех вариантов построения монитора можно ввести и еще один вариант. Он отличается тем, что в мониторе используется такой скалер, который не имеет встроенного LVDS-трансмиттера. В этом случае трансмиттеру соответствует отдельная микросхема, которая устанавливается на основной плате между скалером и LCD-панелью. LVDS-трансмиттер осуществляет преобразование параллельного (24 или 48 разрядного) цифрового потока данных, сформированного скалером, в последовательные данные шины LVDS. LVDS-трансмиттер представляет собой микросхему общего применения, которая может использоваться в любых мониторах. Такая схемотехника, с внешним LVDS-трансмиттером, также характерна, в большей степени, для мониторов более высокого класса, т.к. в них применяются специализированные скалеры с меньшим количеством дополнительных функций. Пример блок-схемы монитора с подобной схемотехникой представлен на рис.9. В качестве примере монитора с таким построением, можно назвать модель LG FLATRON L1811B.
DDC- EEPROM
Все современные мониторы поддерживают технологию Plug&Play, которая предполагает передачу от монитора в сторону ПК паспортной и конфигурационной информации о мониторе. Для передачи этих данных используется последовательный интерфейс DDC, которому на интерфейсе соответствую сигналы DDC-DATA (DDC-SDA) и DDC-CLK (DDC-SCL). Сама паспортная информация хранится в еще одном EEPROM, который, практически, напрямую соединен с интерфейсным разъемом. В качестве EEPROM используются те же микросхемы 24C02, 24C04, 24C08, а также может использоваться и более специализированная – 24C21.
Определение контактов соединения инвертора с блоком питания
Очень простой способ — купить испорченный монитор, коих в интернете очень много. К примеру, ЖК мониторы с диагональю экрана 17» с различными неисправностями продаются рублей за 500, но после недолгого общения с продавцом достаточно часто можно забрать монитор за каких-нибудь 100 рублей. Согласитесь, неплохая альтернатива приобретению нового инвертора за 500-1000 рублей из поднебесной. Разумеется, всегда есть риск, что в купленном мониторе инвертор также окажется испорченным, но тут уж, как говорится, кто не рискует, тот не пьёт шампанского
Теперь нам необходимо определиться с подключением. Плата инвертора с блоком питания имеет лишь один разъём подключения для коннекта с платой контроллера матрицы. Зная, какие контакты есть на выходе этой платы и платы внешнего инвертора, мы можем соединить их проводами. Рассматриваем плату монитора ViewSonic с блоком питания и видим там схему контактов разъёма
На картинке выше у нас следующая расшифровка разъёма:
- два левых контакта +12 отвечают, как видно из обозначения, за подачу плюса;
- два средних контакта GND отвечают за массу (или минус);
- правый верхний контакт ON/OFF отвечает за подачу сигнала на включение/выключение монитора;
- нижний правый контакт BRIG отвечает за управление монитором.
Теперь посмотрим, что у нас есть на выходе с платы внешнего инвертора
Здесь контакты расположены одним рядом и имеют следующее назначение слева направо:
- два контакта GND — это масса (минус);
- контакт ADJ — это управление подсветкой;
- контакт ON/OFF — включение и выключение подсветки;
- два крайних контакта VCC — соответственно, подача плюса.
В нашем случае мы будем соединять попарно одним проводом контакты плюса и массы, и по одному проводу на включение/выключение платы и на управляющий контакт. В идеале, можно на каждый контакт цеплять отдельный провод.
Если на ваших платах нет схемы с расшифровкой, то вы всегда можете найти даташит (от английского Datasheet, что в дословном переводе обозначает «бумажка с информацией», то есть «документация») используемой вами платы. Подчёркиваем, что удобнее и выгоднее искать документацию именно по модели платы, а не по модели монитора, в которой эта самая плата была установлена
Телевизионные скалеры
В таких моделях, как ТВ скалер универсальный, первые три контакта изначально рассчитаны на 5 вольт. Они нужны для подключения к приёмнику. В комплекте есть пульт универсального скалера. Он необходим для тех пользователей, которым не по душе использование телевизионной клавиатуры.
Если понадобится подключить 5-кнопочную клавиатуру, надо пропустить первые 3 контакта. Потом сопоставить, как было указано ранее, К-0 и К-0.
Если есть возможность, лучше сразу приобрести клавиатуру для скалера, в составе которой 7 кнопок и приёмник. Можно разделить устройство и установить его элементы отдельно.
При подключении к TV-скалеру достаточно просто сопоставить универсальный скалер dvb t2 с его кареткой. На плате указаны данные о контактах, следовательно, собрать такое устройство можно будет самостоятельно. Для этого можно взять штатные кнопки от монитора.
Есть кнопки с боковым выходом. Их также довольно просто подключить, так как полностью удастся поместить их в гнездо для кнопок. Там много свободного места. Ошибиться с подключением практически невозможно.
Технические характеристики
Существует множество различных моделей универсальных скалеров, которые отличаются между собой техническим характеристиками. Одной из самых популярных является модель DS.D3663LUA, поскольку на ее базе можно получить полноценный телевизор с Т2-тюнером из любой ЖК-матрицы. Это возможно благодаря наличию цифрового тюнера Rafael R842, который поддерживает сигнал кабельного и эфирного ТВ, а также телетекст. А главный чип MSD3663LUA-Z1 позволяет выводить на экран фото, видео и другие файлы с различных USB-накопителей.
Более детально с техническими характеристиками модели можно ознакомиться в таблице:
Габариты | 194 х 44 х 23 мм (с учетом выступов) |
Шлейф | LVDS |
Типы поддерживаемых матриц | LCD, LED |
Тюнер | Rafael Micro R842 |
Чипсет | MSD3663LUA-Z1 |
Аудио чип | CS37AD2AB |
Звуковые системы | B/G, D/K, l, M/N, NICAM/A2, BTSC |
Мощность аудио выхода | 2х8Вт |
Видео входы | ATV, DVB-T2, DVB-C, HDMI (480i, 480p, 576i, 576p, 720p, 1080i, 1080p) |
Системы изображения | PAL/SECAM/NTSC |
Питание | 12В (постоянного тока). |
Потребление в рабочем/нерабочем состоянии | 6Вт/0,3Вт |
USB-разъем, вход для наушников и антенны | есть |
пульт | есть |
Русский язык в меню | есть |
Помимо платы и пульта к ней, в комплекте также идет инструкция, ИК-приемник и провод с коннектором.
Из чего состоит ЖК монитор
В статье Как подключить монитор к блоку питания компьютера мы уже касались темы восстановления работоспособности компьютерного монитора. Сегодня поговорим о другой проблеме, а именно о том, как починить монитор, если на нём не горят лампы подсветки.
Дело в том, что изображение на ЖК мониторах подсвечивается при помощи специальных устройств:
- люминесцентные лампы подсветки монитора расположены по краям корпуса экрана сверху/снизу или справа/слева;
- светодиодная подсветка мониторов располагается на задней стенке экрана, либо (реже) по краям его корпуса.
В рамках данной статьи мы будем говорить именно о восстановлении подсветки LCD мониторов на основе люминесцентных (газоразрядных) ламп. Если одна из таких ламп «перегорает», то картинка на мониторе будет выглядеть не так ярко, как это было до поломки, цвета будут гораздо тускнее. Когда в мониторе такого типа выходят из строя сразу все лампы (а их, чаще всего, может быть от двух до четырёх, реже, либо в портативных устройствах — одна лампа подсветки), при включении компьютера может показаться, что изображения на экране просто нет и он полностью вышел из строя. Но если поднести экран к источнику яркого света или посветить на дисплей фонариком, то можно увидеть, что картинка на устройстве присутствует. Особенно хорошо это будет заметно под острым углом и при изменении изображения на экране: при сворачивании/разворачивании окон операционной системы, при перемещении окон по рабочему столу, при воспроизведении видео роликов и так далее.
Давайте рассмотрим, из чего состоит компьютерный монитор. На картинке мы видим, как устроен монитор, оснащённый встроенным блоком питания, то есть такой монитор, который соединяется с электрической розеткой проводом питания без дополнительных блоков на нём. Монитор без блока питания выглядит аналогично, только у него отсутствует плата питания, а инвертор напрямую соединён с контроллером дисплея. Контроллер дисплея часто называют скалер, но это не совсем верно, так как, на самом деле понятие скалер гораздо уже:
Скалер — это одна из составных частей платы контроллера, которая отвечает за масштабирование изображения на экране
Итак, сегодня мы не будем разбираться с тем, как провести компонентный ремонт платы монитора, а поговорим о модульном ремонте.
к содержанию
Механические и ультразвуковые аппараты для чистки зубов в пародонтологии
Drisko CL, Cochran DL, Blieden T, Bouwsma OJ, Cohen RE, Damoulis P, Fine JB, Greenstein G, Hinrichs J, Somerman MJ, Iacono V, Genco RJ; Исследование, Исследовательский комитет американской академии периодонтологии Ультразвуковые и механические аппараты, по-видимому, достигают тех же результатов, что и ручные инструменты для удаления зубного налета, камня и эндотоксина. Ультразвуковые аппараты, используемые при средней мощности, производят меньше повреждений поверхности корня, чем ручные или воздушные скалеры. Благодаря ширине инструмента, фуркации более доступными с использованием ультразвукового аппарата, чем ручного скейлера.
Не выяснено, после испоьзования какого скалера шероховатость поверхности корня более или менее выражена. Но также неясно, влияет ли шероховатость поверхности корня на более длительное заживление. Чистка пародонта и околокорневая чистка включают тщательное удаление зубного камня, но полное удаление камня не должно быть целью лечения пародонта. Исследования показали, что эндотоксин слабо адсорбируется на поверхности корня и может быть легко удален легкими перекрывающимися движениями с помощью ультразвукового скалера. Существенным недостатком механических скейлеров является создание загрязненного аэрозоля.
J Periodontol. 2000 Ноябрь ;71(11):1792-801
Телевизионные скалеры
В таких моделях, как ТВ скалер универсальный, первые три контакта изначально рассчитаны на 5 вольт. Они нужны для подключения к приёмнику. В комплекте есть пульт универсального скалера. Он необходим для тех пользователей, которым не по душе использование телевизионной клавиатуры.
Если понадобится подключить 5-кнопочную клавиатуру, надо пропустить первые 3 контакта. Потом сопоставить, как было указано ранее, К-0 и К-0.
Если есть возможность, лучше сразу приобрести клавиатуру для скалера, в составе которой 7 кнопок и приёмник. Можно разделить устройство и установить его элементы отдельно.
При подключении к TV-скалеру достаточно просто сопоставить универсальный скалер dvb t2 с его кареткой. На плате указаны данные о контактах, следовательно, собрать такое устройство можно будет самостоятельно. Для этого можно взять штатные кнопки от монитора.
Есть кнопки с боковым выходом. Их также довольно просто подключить, так как полностью удастся поместить их в гнездо для кнопок. Там много свободного места. Ошибиться с подключением практически невозможно.
Этапы стоматологических работ
Использовать скалер запрещено в домашних условиях. Процедуру очистки зубов с помощью прибора должен выполнять специалист. С помощью ультразвукового аппарата не только снимаются отложения на эмали, но и проводится ее полировка. Все стоматологические манипуляции выполняются поэтапно.
Шаг 1. Снятие налета
Наконечник устройства оснащен металлической накладкой, которая во время движения работы создает колебания, входящие в диапазон ультразвуковых волн.
Аппарат для ультразвуковой чистки зубов
Во время процедуры через скалер подается вода, которая сразу же удаляется слюноотсосом. Удаление отложений происходит благодаря колебательным движениям наконечника и воды, обмывающей эмаль на протяжении всей процедуры. Налет удастся снять только в том случае, если насадка будет скользить вдоль поверхности зубов. За счет этого также удается избежать травмирования костных тканей.
Осложнения после чистки наблюдаются при использовании стоматологом низкокачественного оборудования. В этом случае опыт и квалификация врача не помогут. По этой причине необходимо обращаться только в те клиники, которые оснащены современными моделями скалеров.
Вода, подающаяся из насадки, нужна не только для омывания твердых отложений. Под воздействием колебательных движений в жидкости образуются многочисленные пузырьки, энергии которых хватает для разрушения камня на эмали.
Второй шаг. Полировка
После устранения налета проводится полировка зубной поверхности, поскольку после любой чистки на эмали наблюдается шероховатость и остатки зубного камня, которые увеличивают вероятность повторного образования налета.
Отмечается два эффективных способа полировки зубной поверхности. Существует несколько способов проведения процедуры:
- Использование штрипс или тонких полосок с абразивным веществом.
- Полировка с помощью прибора AirFlow. Очистка происходит с использованием специального состава с абразивными веществами. Смесь подается под определенным давлением, благодаря чему зубы приобретают белизну.
Аппарат Аирфлоу
Если пациент обратился в клинику на ранних стадиях образования зубного камня, то ультразвуковую чистку для него можно заменить полировкой с использованием прибора AirFlow.
Подключение периферии
Допустим, есть колонки монитора небольшого размера. Этот монитор был взят с телевизора. Используем одну из плат с TV-тюнером или мультимедийным процессором. Можно взять и отдельные экземпляры — универсальный скалер с тюнером и выходом под звук.
Здесь есть разъём с соответствующей надписью, что позволит правильно подключить колонки. Точно так же можно подключить TV-скалер.
На некоторых устройствах есть интересный разъём, который необходим для профессионалов, чтобы иметь доступ к исходным кодам и передаваемым сигналам. Подключение универсального скалера после внимательного прочтения статьи можно выполнить самостоятельно.
Просмотры:
96
Скалер
Микросхемой скалера осуществляется обработка сигналов, приходящих от ПК. Скалер в большинстве случаев представляет собой многофункциональную микросхему, в состав которой обычно входят:
— микропроцессор;
— ресивер (приемник) TMDS, которым обеспечивается прием и преобразование в параллельный вид данных, передаваемых по интерфейсу DVI;
— аналого-цифровой преобразователь – АЦП (ADC), которым осуществляется преобразование входных аналоговых сигналов R/G/B;
— блок ФАПЧ (PLL), который необходим для корректного аналого-цифрового преобразования и синхронного формирования сигналов на выходе АЦП;
— схема масштабирования (Scaler), которая обеспечивает преобразования изображения с входным разрешением (например, 1024х768) в изображение с разрешением LCD-панели (например, 1280х1024);
— формирователь OSD;
— трансмиттер (LVDS), который осуществляет преобразование параллельных данных о цвете в последовательный код, передаваемый на LCD-панель по шине LVDS.
Кроме этих основных элементов, в составе некоторых скалеров можно выделить еще схему гамма-коррекции, интерфейс для работы с динамической памятью, схему фрейм-граббера, схемы конвертации форматов (например, YUV в RGB) и т.п.
Фактически, скалер является микропроцессором, оптимизированным под выполнение вполне определенных задач – обработку изображения. Скалер настраивается на формат входных сигналов, получая соответствующие команды от центрального процессора монитора.
Если в составе монитора имеется фрейм-буфер (оперативная память), то работа с ним является функцией именно скалера. Для этого многие скалеры оснащаются интерфейсом для работы с динамической памятью.
Пример функциональной схемы скалера GM5020, используемого в мониторе LG FLATRON L1811B, представлен на рис.5. Особенностью этого скалера является то, не содержит внутреннего LVDS-трансмиттера, и формирует сигналы цвета в виде параллельного 48-разрядного потока цифровых данных. При использовании скалера GM5020 требуется еще и внешний LVDS-трансмиттер, представляющий собой специализированную микросхему.
Подключение матрицы к скалеру.
На самом деле, мне повезло, и у меня подключение обеих матриц было идентично. Пришлось только разобрать шлейф монитора 17″ и просто переставить контакты местами. Входы в матрицу тоже идентичны, в итоге я одним шлейфом проверил сразу 2 матрицы разных мониторов.
Разъём и обозначения на матрице.
Видно 10 каналов, питание 5 вольт и промежутки между каналами — это масса.
Разъём скалера.
Трындец, вот тут я встал в ступор. Ни одной маркировки на данный разъём.
Хорошо, что есть добрые люди, которые выложили другую версию скалера с точно такой же распиновкой.
На шлейфе от матрицы до родного скалера всё перепутано. Надо исправить)
То есть: питание первым, а дальше, как разведено на матрице, по порядку, по 2 сигнальных провода. Не путаем + и -, незабываем про земляные (GND).
Вот так получилось у меня.
Вариант для проверки.
Окончательный вариант.
На матрице два левых питание +5 их вставляем первыми, затем один красный их середины, это общий. Если перевернуть матрицу, то видно что они уходят на массу.
А далее, первая пара, вторая пара и т.д.
Для контроля я подключил только общий и питания, включил скалер. Сразу стало понятно, что матрица работает, она сразу стала чёрной. Без питания, когда работают только лампы, она более светлая.
Подключение внешнего инвертора к плате блока питания монитора
Теперь, когда мы определились с контактами на платах, можно приступать к их соединению. Реализовать коннект между платами можно разными способами, наиболее простые из них:
- непосредственно с разъёма, подцепив провода к контактам на выходе;
- врезавшись в провода, идущие от блока питания к плате контроллера;
- подпаяв провода на инвертор к плате питания.
Воспользуемся третьим способом, но, если у вас нет паяльника, то второй вариант в этом случае может быть предпочтительнее.
Припаиваем с обратной стороны платы блока питания монитора по проводу к плюсовому, минусовому, управляющему контакту и контакту включения/выключения монитора. Контакты в обязательном порядке заизолировать друг от друга термоусадочной трубкой на каждый провод или обычной изолентой.
Теперь от разъёма инвертора отрезаем обратку и попарно соединяем провода с теми, что мы припаяли к плате питания.
- провод от +12 к двум проводам контактов VCC;
- провод от GND к двум проводам контактов GND платы инвертора;
- провод от контакта BRIG соединяем с проводом ADJ;
- провода ON/OFF плат соединяем между собой.
Соединения для надёжности и порядка тоже пропаиваем.
Готово, уже можно подключать платы, соединять монитор с компьютером и включать его, проверяя работу.
Скалер
Микросхемой скалера осуществляется обработка сигналов, приходящих от ПК. Скалер в большинстве случаев представляет собой многофункциональную микросхему, в состав которой обычно входят:
— микропроцессор;
— ресивер (приемник) TMDS, которым обеспечивается прием и преобразование в параллельный вид данных, передаваемых по интерфейсу DVI;
— аналого-цифровой преобразователь – АЦП (ADC), которым осуществляется преобразование входных аналоговых сигналов R/G/B;
— блок ФАПЧ (PLL), который необходим для корректного аналого-цифрового преобразования и синхронного формирования сигналов на выходе АЦП;
— схема масштабирования (Scaler), которая обеспечивает преобразования изображения с входным разрешением (например, 1024х768) в изображение с разрешением LCD-панели (например, 1280х1024);
— формирователь OSD;
— трансмиттер (LVDS), который осуществляет преобразование параллельных данных о цвете в последовательный код, передаваемый на LCD-панель по шине LVDS.
Кроме этих основных элементов, в составе некоторых скалеров можно выделить еще схему гамма-коррекции, интерфейс для работы с динамической памятью, схему фрейм-граббера, схемы конвертации форматов (например, YUV в RGB) и т.п.
Фактически, скалер является микропроцессором, оптимизированным под выполнение вполне определенных задач – обработку изображения. Скалер настраивается на формат входных сигналов, получая соответствующие команды от центрального процессора монитора.
Если в составе монитора имеется фрейм-буфер (оперативная память), то работа с ним является функцией именно скалера. Для этого многие скалеры оснащаются интерфейсом для работы с динамической памятью.
Пример функциональной схемы скалера GM5020, используемого в мониторе LG FLATRON L1811B, представлен на рис.5. Особенностью этого скалера является то, не содержит внутреннего LVDS-трансмиттера, и формирует сигналы цвета в виде параллельного 48-разрядного потока цифровых данных. При использовании скалера GM5020 требуется еще и внешний LVDS-трансмиттер, представляющий собой специализированную микросхему.
Блок питания
Блоком питания из переменного напряжения сети формируются постоянные напряжения +12В и +5В, используемые для питания всех каскадов монитора. Блок питания является импульсным и может представлять собой как внешний сетевой адаптер, так и внутренний модуль монитора, хотя в мониторах, представленных в данном обзоре, блок питания является внутренним.
Подавляющее большинство LCD мониторов можно отнести к одному из трех базовых вариантов схемотехники, которые попытаемся охарактеризовать.
1) Первый вариант характеризуется наличием на MAIN BOARD двух основных микросхем: микросхемы микропроцессора и микросхемы скалера. Микропроцессором осуществляется общее управление компонентами монитора, а скалер осуществляет преобразование цветовых сигналов, т.е. осуществляет подстройку изображения под разрешение LCD-панели. При этом скалер обрабатывает данные «на лету», т.е. без предварительного сохранения образа изображения в промежуточной памяти. Поэтому микросхемы памяти в таком варианте схемотехники не используются. Блок-схема такого LCD-монитора демонстрируется на рис.6.