Курс «arduino для начинающих»

Модули и решения «умного дома» на Ардуино

Основным элементом умного дома является центральная плата микроконтроллера. Две и более соединенных между собой плат, отвечают за взаимодействие всех элементов системы.

Существует три основных микроконтроллера в системе:

Arduino UNO – средних размеров плата с собственным процессором и памятью. Основа — микроконтроллер ATmega328.  В наличии 14 цифровых входов/выходов (6 из них можно использовать как ШИМ выводы), 6 аналоговых входов, кварцевый резонатор 16 МГц, USB-порт (на некоторых платах USB-B), разъем для внутрисхемного программирования, кнопка RESET. Флэш-память – 32 Кб, оперативная память (SRAM) – 2 Кб, энергонезависимая память (EEPROM) – 1 Кб.

Arduino UNO

Arduino NANO – плата минимальных габаритов с микроконтроллером ATmega328. Отличие от UNO – компактность, за счет используемого типа контактных площадок – так называемого «гребня из ножек».

Arduino Nano

Arduino MEGA – больших размеров плата с микроконтроллером ATMega 2560. Тактовая частота 16 МГц (как и в UNO), цифровых пинов 54 вместо 14, а аналоговых 16, вместо 6. Флэш-память – 256 Кб, SRAM – 8 Кб, EEPROM – 4.

Arduino Mega

Arduino UNO – самая распространённая плата, так как с ней проще работать в плане монтажных работ. Плата NANO меньше в размерах и компактнее – это позволяет разместить ее в любом уголке умного дома. MEGA используется для сложных задач.

Сейчас на рынке представлено 3 поколение плат (R3) Ардуино. Обычно, при покупке платы, в комплект входит обучающий набор для собирания StarterKit, содержащий:

  1. Шаговый двигатель.
  2. Манипулятор управления.
  3. Электросхематическое реле SRD-05VDC-SL-C 5 В.
  4. Беспаечная плата для макета MB-102.
  5. Модуль с картой доступа и и двумя метками.
  6. Звуковой датчик LM393.
  7. Датчик с замером уровня жидкости.
  8. Два простейших устройства отображения цифровой информации.
  9. LCD-дисплей для вывода множества символов.
  10. LED-матрица ТС15-11GWA.
  11. Трехцветный RGB-модуль.
  12. Температурный датчик и измеритель влажности DHT11.
  13. Модуль риал тайм DS1302.
  14. Сервопривод SG-90.
  15. ИК-Пульт ДУ.
  16. Матрица клавиатуры на 16 кнопок.
  17. Микросхема 74HC595N сдвиговый регистр для получения дополнительных выходов.
  18. Основные небольшие компоненты электроники для составления схемы.

Можно найти и более укомплектованный набор для создания своими руками умного дома на Ардуино с нуля. А для реализации иного проекта, кроме элементов обучающего комплекта, понадобятся дополнительные вещи и модули.

Сенсоры и датчики

Чтобы контролировать температуру и влажность в доме и в подвальном помещении, потребуется датчик измерения температуры и влажности. В конструкторе умного дома это плата, соединяющая в себе датчики температуры, влажности и LCD дисплей для вывода данных.

Плата дополняется совместимыми датчиками движения или иными PIR-сенсорами, которые определяют присутствие или отсутствие человека в зоне действия, и привязывается через реле к освещению.

Датчик Arduino

Газовый датчик позволит быстро отреагировать на задымленность, углекислоту или утечку газа, и позволит при подключении к схеме, автоматически включить вытяжку.

Газовый датчик Arduino

Реле

Компонент схемы «Реле» соединяет друг с другом электрические цепи с разными параметрами. Реле включает и выключает внешние устройства с помощью размыкания и замыкания электрической цепи, в которой они находятся. С помощью данного модуля, управление освещением происходит также, если бы человек стоял и самостоятельно переключал тумблер.

Реле Arduino

Светодиоды могут указывать состояние, в котором реле находится в данным момент времени. Например, красный – освещение выключено, зеленый – освещение есть. Схема подключение к лампе выглядит так.

Для более крупного проекта лучше применять шину реле, например, восьмиканальный модуль реле 5V.

Контроллер

В качестве контроллера выступает плата Arduino UNO. Для монтажа необходимо знать:

описание элементов;

распиновку платы;

принципиальную схему работы платы;

распиновку микроконтролеера ATMega 328.

Программная настройка

Программирование подключенных элементов Ардуино происходит в редакторе IDE. Скачать его можно с официального сайта. Для программирования можно использовать готовые библиотеки.

Или воспользоваться готовым скетч решением Ardublock – графический язык программирования, встраиваемый в IDE. По сути, вам нужно только скачать и установить ПО, а затем использовать блоки для создания схемы.

Программирование Arduino Uno с помощью PlatformIO

Мы рассмотрим программирование платы Arduino Uno с помощью PlatformIO на примере простой программы мигания светодиодом. Для этого выполните следующую последовательность шагов.

Выберите в PlatformIO вкладку “New Project” (новый проект) из меню быстрого доступа.

Дайте имя проекту (в нашем случае мы назвали его ‘Blink’). Выберите тип платы, с которой будете работать – в нашем случае это Arduino Uno. Поскольку мы собираемся работать во фреймворке Arduino, то в поле фреймворк (framework) необходимо выбрать Arduino. После заполнения всех полей нажмите Finish.

Подождите некоторое время пока ваш новый проект создастся и “подтянет” к себе необходимые ресурсы и расширения.

Когда проект успешно создастся вы увидите всплывающее сообщение “Project has been successfully initialized” как показано на следующем рисунке.

Чтобы открыть созданный проект пролистайте вниз Home Menu (главное меню) PlatformIO и вы увидите список всех созданных проектов. В правой стороне напротив интересующего вас проекта нажмите ссылку ‘Open’ чтобы перейти к редактированию проекта.

Когда проект будет открыт первоначально он будет отображаться как скрытый, но не беспокойтесь, PlatformIO имеет весьма продвинутые опции для работы с файлами, поэтому вы без труда найдете все файлы проекта. Просто идите в левый верхний угол и нажмите там ‘Untitled (Workplace)’. Когда вы нажмете эту ссылку, все файлы проекта появятся в выпадающем меню. Чтобы открыть окно редактирования кода, выберите в выпавшем списке ‘src’ и затем ‘main.cpp’. Окно редактора кода появится в главном экране (Home Screen) с открытием новой вкладки (Tab). После этого вы сможете писать/редактировать код вашей программы.

Напишите код программы для простого мигания светодиодом в плате Arduino Uno. Следует отметить, что PlatformIO по умолчанию не имеет прямого доступа к библиотекам Arduino, поэтому для написания даже самой простой программы (не требующей никаких библиотек) всегда добавляйте строку “#include <Arduino.h>” в самом начале программы.

Следующим шагом будет компиляция и загрузка кода программы в плату Arduino Uno. PlatformIO изначально выбирает тот COM порт, который стоит в системе по умолчанию. Но если это не тот COM порт, который вам нужен, то его можно изменить – это будет объяснено далее в статье. PlatformIO имеет такие функции для работы с кодом программы как Build, Upload, Upload to Remote Device (загрузка в удаленное устройство), Clean, Test, Run Task, Serial Monitor, New Terminal. Все эти функции доступны в левом нижнем углу редактора как показано на следующем рисунке. Когда вы будете наводить мышкой на иконки этих функций, то будет показываться их описание.

Чтобы скомпилировать скетч нажмите на ‘Build’, а чтобы загрузить его в плату Arduino – нажмите на ‘Upload’. Когда загрузка кода в плату будет закончена вы сможете увидеть время, которое потребовалось для загрузки кода, и другие параметры загрузки. Также появится сообщение “Success” (успех). Когда загрузка кода программы в плату будет закончена вы сможете увидеть результат работы программы.

Чтобы выбрать или изменить COM порт, перейдите на главный экран (Home Screen) PlatformIO, выберите там пункт меню Devices (устройства) как показано на следующем рисунке. После этого вы увидите все доступные (подключенные) устройства. Выберите нужный вам COM порт.

Аналоговые входы Arduino

Как мы уже знаем, цифровые пины могут быть как входом так и выходом и принимать/отдавать только 2 значения: HIGH и LOW. Аналоговые пины могут только принимать сигнал. И в отличии от цифровых входов аналоговые измеряют напряжение поступающего сигнала. В большинстве плат ардуино стоит 10 битный аналогово-цифровой преобразователь. Это значит что 0 считывается как 0 а 5 В считываются как значение 1023. То есть аналоговые входы измеряют, подаваемое на них напряжение, с точностью до 0,005 вольт. Благодаря этому мы можем подключать разнообразные датчики и резисторы (терморезисторы, фоторезисторы) и считывать аналоговый сигнал с них.

Для этих целей в Ардуино есть функция analogRead(). Для примера подключим фоторезистор к ардуино и напишем простейший скетч, в котором мы будем считывать показания и отправлять их в монитор порта. Вот так выглядит наше устройство:

Подключение фоторезистора к Ардуино

В схеме присутствует стягивающий резистор на 10 КОм. Он нужен для того что бы избежать наводок и помех. Теперь посмотрим на скетч:

Вот так из двух простейших элементов и четырех строк кода мы сделали датчик освещенности. На базе этого устройства мы можем сделать умный светильник или ночник. Очень простое и полезное устройство.

Вот мы и рассмотрели основы работы с Arduino. Теперь вы можете сделать простейшие проекты. Что бы продолжить обучение и освоить все тонкости, я советую прочитать книги по ардуино и пройти бесплатный обучающий курс. После этого вы сможете делать самые сложные проекты, которые только сможете придумать.

Работа программного обеспечения

Интерфейс DS5000

Программа, приведённая в Приложении, написана для взаимодействия DS5000 с DS1307 с помощью двухпроводного интерфейса. DS5000 запрограммирован с использованием макетной платы DS5000T фирмы Dallas Semiconductor, которая позволяет использовать ПК в качестве терминала ввода/вывода. Программные средства KIT5K поставляемые вместе с макетной платой DS5000T обеспечивают высокоуровневый интерфейс для загрузки программных приложений в DS5000 или установки его параметров через Program command. Программное обеспечение KIT5K содержит эмулятор терминала ввода/вывода, чтобы позволить пользователю запускать программные приложения в микроконтроллер DS5000, который связан с пользователем через COM порт ПК.

Исходный код DS1307

Первый раздел исходного кода, расположенный в Приложении, используется при конфигурации DS5000 для последовательного соединения с ПК. Также в начале кода находится подпрограмма MASTER_CONTROLLER, которая используется для управления демонстрационной программой.

Подпрограммы, которые следуют непосредственно за подпрограммой MASTER_CONTROLLER, являются драйверами низкого уровня и служат для управления двухпроводным интерфейсом. Они не являются индивидуальными для DS1307, а могут быть использованы с любым совместимым с двухпроводным интерфейсом «ведомым» устройством. Вот эти подпрограммы:

SEND_START

Подпрограмма используется для генерации состояния START на двухпроводной шине.

SEND_STOP

Подпрограмма используется для генерации состояния STOP на двухпроводной шине.

SEND_BYTE

Подпрограмма посылает 8-разрядное слово (первым является старший значащий бит (MSB)) по двухпроводной шине и девятый тактовый импульс для импульса подтверждения приёма.

READ_BYTE

Подпрограмма читает 8-разрядное слово с двухпроводной шины. Она проверяет очищен ли флаг LASTREAD после того, как считан последний байт из «ведомого» устройства. Если это был не последний байт, то DS5000 посылает импульс подтверждения по девятому тактовому импульсу, а если это был последний считанный байт из «ведомого» устройства, то DS5000 посылает «неподтверждение».

SCL_HIGH

Подпрограмма осуществляет переход линии SCL из низкого в высокое состояние и обеспечивает высокое состояние линии SCL перед продолжением.

DELAY и DELAY_4

Эти две подпрограммы включены для обеспечения сохранения временной диаграммы двухпроводной шины.

Остальная часть кода, включённая в приложение, специально предназначена для демонстрации функций DS1307. Продемонстрированы следующие функции:

Setting Time

Время считывается с клавиатуры и сохраняется в сверхоперативной памяти DS5000. Затем оно передаётся по двухпроводной шине в DS1307.

Set RAM

Одиночный байт в шестнадцатеричном виде считывается с клавиатуры и записывается в RAM DS1307.

Read Date/Time

Дата и время считываются по двухпроводной шине и сохраняются в сверхоперативной памяти DS5000. Затем они выводятся на экран. Это продолжается до тех пор, пока не будет нажата кнопка на клавиатуре.

OSC On/OSC Off

Тактовый генератор DS1307 может быть включен или выключен.

SQW/OUT On/SQW/OUT Off

Функция SQW/OUT может быть включена или выключена. Она будет переключаться на частоте 1 Гц.

Таблица 1. AC электрические характеристики

Параметр Символ Эффективноезначение Единицы
Тактовая частота SCL fSCL 59 кГц
Время свободного состояния шины между состояниями STOP и START tBUF 5.7 мкс
Время удержания(повторенного) состояния START tHD:STA 6.2 мкс
Период низкого состояния тактового импульса SCL tLOW 10.5 мкс
Период высокого состояния тактового импульса SCL tHIGH 6.5 мкс
Время установки для повторного состояния START tSU:STA 5.3 мкс
Время удержания данных tHD:DAT 5.5 мкс
Время установки данных tSU:DAT 3.1 мкс
Время установки для состояния STOP tSU:STO 5.4 мкс

Заключение

Было показано, как правильно подсоединять напрямую DS1307 или любое двухпроводное «ведомое» устройство к 8051-совместимому микроконтроллеру. Соединение должно быть таким, чтобы временная диаграмма двухпроводного интерфейса на микроконтроллере не нарушалась драйверами низкого уровня. Для этого в программный код должны быть включены подпрограммы задержки. Приведённых в таблице 1 эффективных значений, придерживались при конфигурации аппаратной части, описанной в данном техническом руководстве.

Документация

  Rus Пример программы на языке Асемблер
  100 Kb Engl Исходный фаил
  Rus Описание интерфейса I2C
  Програмное обеспечение микроконтроллеров MCS-51
  200 Kb Engl Описание DS1307 — часы реального времени с IIC интерфейсом

Главная —
Микросхемы —
DOC —
ЖКИ —
Источники питания —
Электромеханика —
Интерфейсы —
Программы —
Применения —
Статьи

Подключение вашей платы Arduino к компьютеру

После того как вы установили Arduino IDE на свой компьютер следующим логичным шагом будет подключение платы Arduino UNO к компьютеру. Чтобы сделать это просто используйте кабель для программирования (синего цвета) и соедините его с платой Arduino и USB портом вашего компьютера.

Синий кабель для программирования может выполнять следующие три функции:

  1. Он запитывает плату Arduino UNO, то есть чтобы обеспечить выполнение программ на ней необходимо просто запитать ее с помощью USB кабеля.
  2. Через него программируется микроконтроллер ATmega328, находящийся на плате Arduino UNO. То есть код программы пересылается из компьютера в микроконтроллер именно по этому кабелю.
  3. Он может функционировать в качестве кабеля для последовательной связи, то есть с его помощью можно передавать данные с Arduino UNO в компьютер – это полезно для целей отладки программы.

После того как вы подадите питание на плату Arduino UNO на ней загорится маленький светодиод – это свидетельствует о том, что на плату подано питание. Также вы можете заметить как мигает другой светодиод – это результат работы программы по управлению миганием светодиода, которая по умолчанию загружена в вашу плату ее производителем.

Поскольку вы подключаете плату Arduino в первый раз к компьютеру необходимо некоторое время чтобы драйвера для нее успешно установились. Чтобы проверить правильно ли все установилось и определилось откройте «Диспетчер устройств (Device manager)» на вашем компьютере.

В диспетчере устройств откройте опцию «Порты» “Ports (COM & LPT)”, кликните на ней и посмотрите правильно ли отображается там ваша плата.

При этом стоит отметить, что не стоит обращать внимание на то, какой номер порта отобразился у вашей платы Arduino – он может, к примеру, выглядеть как CCH450 или что то подобное. Этот номер порта просто определяется производителем платы и больше ни на что не влияет

Если вы не можете в диспетчере устройств найти опцию “Ports (COM & LPT)”, то это означает, что ваша плата не корректно определилась компьютером. В большинстве случает это означает проблему с драйверами – по какой то причине они автоматически не установились для вашей платы. В этом случае вы должны будете вручную установить необходимые драйверы.

В некоторых случаях в указанной опции диспетчера устройств может отобразиться два COM порта для вашей платы и вы не будете знать какой из них правильный. В этой ситуации отключите и снова подключите плату Arduino к компьютеру – какой из COM портов при этом будет появляться и исчезать, значит тот и правильный порт.

Следует помнить о том, что номер COM порта будет изменяться при каждом новом подключении вашей платы к компьютеру – не пугайтесь, в этом нет ничего страшного.

Как настроить Ардуино?

Одним из главных преимуществ конструктора является его безопасность относительно настроек пользователя. Ключевые настройки, потенциально опасные для Arduino, являются защищенными и будут недоступны.

Поэтому даже неопытный программист может смело экспериментировать и менять различные опции, добиваясь нужного результата. Но на всякий случай очень рекомендуем прочитать три важных материала по тому как не испортить плату:

  • Как уберечь Arduino и другие платы от кривых рук
  • 10 способов «убить» микроконтроллер Arduino

Алгоритм классической настройки программы Arduino выглядит так:

  • установка IDE, которую можно загрузить ниже или здесь или с сайта производителя;
  • установка программного обеспечения на используемый ПК;
  • запуск файла Arduino;
  • вписывание в окно кода разработанную программу и перенос ее на плату (используется USB кабель);
  • в разделе IDE необходимо выбрать тип конструктора, который будет использоваться. Сделать это можно в окне «инструменты» — «платы»;
  • проверяете код и жмете «Дальше», после чего начнется загрузка в Arduino.
1.8.7 Код на Github
1.8.6 Код на Github
1.8.5 Код на Github
1.8.4 Код на Github
1.8.3 Код на Github
1.8.2 Код на Github
1.8.1 Код на Github
1.8.0 Код на Github
1.6.13 Код на Github
1.6.12 Код на Github
1.6.11 Код на Github
1.6.10 Код на Github
1.6.9 Код на Github
1.6.8 Код на Github
1.6.7 Код на Github
1.6.6 Код на Github
1.6.5 Код на Github
1.6.4 Код на Github
1.6.3 Код на Github
1.6.2 Код на Github
1.6.1 Код на Github
1.6.0 Код на Github
1.5.8 BETA Код на Github
1.5.7 BETA Код на Github
1.5.6-r2 BETA Код на Github
1.5.5 BETA Код на Github
1.5.4 BETA Код на Github
1.5.3 BETA Код на Github
1.5.2 BETA Код на Github
1.5.1 BETA Код на Github
1.5 BETA Код на Github

Аппаратные прерывания

В Arduino имеется 4 вида аппаратных прерываний. Отличаются они сигналом на контакте прерывания.

  • Контакт прерывания притянут к земле. Ардуино будет выполнять обработчик прерывания пока на пине прерывания будет сигнал LOW.
  • Изменение сигнала на контакте прерывания. Ардуино будет выполнять обработчик прерывания каждый раз когда на пине прерывания будет изменяться сигнал.
  • Изменение сигнала на контакте прерывания от LOW к HIGH. Обработчик прерывания исполняется только при изменении низкого сигнала на высокий.
  • Изменение сигнала на контакте прерывания от HIGH к LOW. Обработчик прерывания исполняется только при изменении высокого сигнала на низкий.

Если прерывание ожидает нажатия кнопки, то это может стать проблемой из-за дребезга контактов. В 6 уроке мы уже говорили о дребезге контактов. Тогда мы использовали функцию delay(), но в прерываниях данная функция не доступна. Поэтому нам придется подавить дребезг контактов немного усложнив схему подключения кнопки к пину прерывания. Для этого понадобится резистор на 10 КОм, конденсатор на 10 микрофарад,и инвертирующий триггер шмитта. Подключается все по следующей схеме:

подключение кнопки прерывания ардуино

В Arduino Uno есть два пина, поддерживающие прерывания. Это цифровые пины 2 (int 0) и 3 (int 1). Один из них мы и будем использовать в нашей схеме.

Предлагаю сделать устройство, которое будет поочередно изменять яркость светодиодов в зависимости от показаний инфракрасного датчика расстояния, а по нажатию на кнопку прерывания будем переходить от одного светодиода к другому. Наше устройство будет выглядеть примерно вот так:

Использование прерываний Arduino

Схема кажется сложной и запутанной, но это не так. Мы подключаем кнопку прерывания к пину Arduino D2, используя аппаратное подавление дребезга контактов. К аналоговому пину A0 мы подключаем инфракрасный дальномер. И к пинам D9, D10 и D11 мы подключаем светодиоды через резисторы на 150 Ом. Мы выбрали именно эти контакты для светодиодов, потому что они могут выдавать ШИМ сигнал.Теперь рассмотрим скетч:

Обратите внимание на следующие моменты: Необходимо использовать ключевое слово «volatile» перед объявлением переменной значение которой будет изменяться в обработчике прерывания. Так же я добавил переменную «nullLed» для того что бы программа на определенном шаге не меняла цвет ни одного из подключенных светодиодов

Строка «attachInterrupt(buttonInt, swap, RISING);» назначает обработчиком прерывания функцию swap. Подробнее об этой функции вы можете почитать здесь.

Функция swap просто переключает текущий светодиод на следующий. Остальной скетч должен быть вам понятен, если вы посмотрели все предыдущие уроки. Это последний обучающий урок. В следующих статьях я расскажу о подключении к Arduino популярных модулей.

Язык программирования Ардуино

Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.

Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:

  • После каждой инструкции необходимо ставить знак точки с запятой (;)
  • Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
  • Так же необходимо указывать тип данных перед объявлением переменной.
  • Комментарии обозначаются: // Строчный и /* блочный */

Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по программированию Arduino. Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.

Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().

Функция setup

Функция setup() выполняется в самом начале и только 1 раз сразу после включения или перезагрузки вашего устройства. Обычно в этой функции декларируют режимы пинов, открывают необходимые протоколы связи, устанавливают соединения с дополнительными модулями и настраивают подключенные библиотеки. Если для вашей прошивки ничего подобного делать не нужно, то функция все равно должна быть объявлена. Вот стандартный пример функции setup():

Функция loop

Функция loop() выполняется после функции setup(). Loop в переводе с английского значит «петля». Это говорит о том что функция зациклена, то есть будет выполняться снова и снова. Например микроконтроллер ATmega328, который установлен в большинстве плат Arduino, будет выполнять функцию loop около 10 000 раз в секунду (если не используются задержки и сложные вычисления). Благодаря этому у нас есть большие возможности.

Язык программирования

Язык программирования Ардуино довольно прост в освоении, так как основной целевой аудиторией его применения являются любители. Однако считается одним из самых лучших языков для программирования микроконтроллеров.

Внимание! Для начала работы необходимо установить среду программирования Arduino IDE.

Arduino IDE является бесплатной программой, скачать которую может любой желающий. На нашем сайте вы можете скачать любую подходящую для вас версию среды. Также доступ к скачиванию IDE предоставлен на официальном сайте компании, а при желании, разработчиков можно отблагодарить, сделав денежный перевод.

Программу, написанную на языке программирования Ардуино называют скетчем. Готовые скетчи записываются на плату для их выполнения.

Среда IDE поддерживается такими операционными системами, как Windows, MacOs и Linux. На официальном сайте компании указанно, что данный язык программирования написан на Wiring, но на самом деле его не существует и для написания используется C++ с небольшими изменениями.

All-Arduino

Программирование микроконтроллеров Arduino осуществляется на языке программирования C++. Этот язык является низкоуровневым, поэтому считается сложным и имеет высокий порог вхождения. Но для программирования Arduino используется упрощенная версия этого языка программирования.

Этот сайт содержит уроки для обучения новичков. Здесь собранны уроки по Arduino для начинающих. Так же будут уроки и по более сложным аспектам программирования ардуино.

Почти все уроки содержат видео для наглядного получения информации, а также текстовую интерпретацию, ссылки на необходимые компоненты и архив с исходниками урока. Так вы сможете не только посмотреть и послушать урок, но и без труда повторить его для приобретения практических навыков.

После прохождения курса вы сможете реализовать проекты любой сложности. Курс по работе с arduino для новичков рассчитан на 8 часов.

Freeduino – Arduino совместимый микроконтроллер

Что такое Freeduino?

Freeduino — программируемая через USB порт микро-ЭВМ, в которую можно загрузить любую программу и получить компактное автономное микропроцессорное устройство с заложенными в него Вашими функциями.

Freeduino — совместимая с Arduino открытая платформа, популярная во всем мире, и наиболее известная именно под именем Arduino. Встречаются также и русские варианты написания: «Ардуино» и «Фридуино».

Возможности платформы не ограничены имеющейся «на борту» периферией – существуют модули, добавляющие к Freeduino новые функции и интерфейсы, такие, например, как модуль Ethernet, или модуль M-Shield, упрощающий подключение двигателей постоянного тока и шаговых двигателей:

^^^

Чем вызвана популярность проекта?

Проект действительно популярен — Google насчитал больше 60 миллионов ссылок: https://www.google.com/search?q=Arduino

  • Сопряжение устройства с USB портом компьютера;
  • Не требуется навыков программирования микроконтроллеров;
  • Не требуются специализированные программаторы и компиляторы;
  • Программируется на очень простом языке, понятном неспециалисту;
  • Удобная и простая среда разработки программ для микроконтроллера;
  • Широкое распространение в сети Internet: сотни сайтов с примерами готовых проектов и библиотек дополнительных функций;
  • Проект является 100% открытым — доступны все исходные тексты;
  • Устройство достаточно функционально — 14 цифровых входов/выходов, из них 6 выходов с широтно-импульсным модулированием, 6 аналоговых входов;
  • Кроссплатформенность. Среда разработки программ для Freeduino работает на Windows, Macintosh OS X, Linux и других операционных системах, поскольку является открытой и реализована на Java.

Области применения

Freeduino можно использовать практически по всех областях электроники, где требуется управление системой по заданному алгоритму с возможностью реагирования на внешние сигналы.

С помощью Freeduino Вы можете легко изготовить системы управления различных электронных устройств: светомузыка; сигнализация; шаговый двигатель; жидкокристаллическая панель, возможно применение в измерении физических величин совместно с датчиками уровня, движения, веса и многое другое.

Чем отличается Freeduino от Arduino?

Если отвечать коротко, то почти ничем.

Электрические схемы микроконтроллеров Arduino и Freeduino не имеют никаких принципиальных различий, и устройства 100% совместимы друг с другом. Несмотря на то, что весь проект Arduino (включая среду разработки, компилятор, прошивки загрузчика, электрическую схему и прочее) является открытым, есть ограничение на использование названия Arduino. Поэтому энтузиасты и организовали проект Freeduino.

Наборы и конструкторы Ларт

ЛАРТ Сармат Армага

Набор на основе контроллера Ардуино, при помощи которого можно собрать робота, движущегося по линии. Главный компонент комплекта – миниатюрная плата Ардуино Нано, которая позволяет подключать не только входящие в состав набора компоненты, а и другие элементы совместимые с Ардуино, как механического, так и электронного типа. Это дает возможность совершенствовать полученного робота.

ЛАРТ Печенег Батана

Комплект включает плату Ардуино Нано и имеет достаточное количество элементов для разработки и строительства роботов, которых при помощи состава набора можно собрать две разновидности: робот, движущийся по черной линии и робот с датчиком ультразвука. Для программирования применяется текстовая среда Arduino IDE. Для разных модификаций роботов имеется возможность использования совместимых с Ардуино компонентов, а при помощи дополнительной пластины можно установить большее количество датчиков.

Выбрать и купить наборы ЛАРТ можно на официальном сайте: lartmaster.ru/

Конструктор Смарт Робо

Готовый конструктор для создания электронного робота на основе Ардуино, в комплект входит необходимое количество элементов, и руководство к сборке. Базовый элемент набора – плата от Keyestudio (100% аналог Ардуино). Полученный робот может быть запрограммирован на движение по линии, возможность объезда препятствий и управление от дистанционного пульта. Все элементы соединяются при помощи быстроразъемных соединителей и не требуют пайки. Доработать и усовершенствовать полученную конструкцию можно добавив на плату дополнительные элементы, совместимые с контроллером Ардуино.

Конструктор Смарт

Серия наборов, которые отличаются по комплектации. Основной компонент – плата Smart Uno – аналог контроллера Ардуино Уно, не уступающий ему по качественным характеристикам. В зависимости от комплектации (Смарт 10, Смарт 20 и Смарт 30) набор содержит элементы, как для начального уровня проектирования, так и для разработки более сложных проектов. При необходимости возможно подключение других электронных компонентов, совместимых с микроконтроллером.

Смарт Genuino

Серия наборов – Смарт 10 Genuino, Смарт 20 Genuino, Смарт 30 Genuino, которые отличны по количеству деталей в комплекте. Главный базовый компонент – плата Genuino Uno, кроме которой в составе имеются электронные детали, беспаечная макетная плата, провода и руководство по проектированию. Набор будет интересен как новичкам, так и профессиональным пользователям.

Выбрать и купить конструктор SmartElements можно на официальном сайте: https://smartelements.ru/

Робоплатформа Robbo (ScratchDuino)

Конструктор предназначен для обучения детей и взрослых основам робототехники и электроники. Управление роботизированным механизмом может осуществляться из различных сред программирования (Scratch, Lazarus, Кумир) или же пульта управления. Базовый компонент – картридж Ардуино. В зависимости от типа комплектации варьируется количество составных элементов.

Выбрать и купить конструктор Robbo можно на официальном сайте: https://robboclub.ru/