Супергетеродинный приемник принцип работы

Какие факторы важны при покупке цифрового радиоприемника?

Перед приобретением, прежде всего, следует убедиться в том, что продукция уверенно ловит сигнал – это позволяет минимизировать помехи, сделать вещание четким и максимально громким. Наиболее удобными на сегодняшний день являются портативные конструкции, которые способны работать как от батареек или аккумуляторов, так и от сети. Такими приборами можно пользоваться, например, на даче или на природе, где не всегда имеется доступ к электричеству.

Обязательно нужно проверить, с каким диапазоном волн способен работать данный гаджет. Большинство моделей поддерживают сетку вещания, начиная от 80 МГц и выше. Однако если планируется брать с собой приемник на природу, либо в места, где отсутствует полноценное цифровое вещание, то лучше отдать предпочтение более мощным конструкциям, которые могут работать с частотами от 64 МГц.

Желательно, чтобы приемник был оборудован модулем DAB, который обеспечивает стабильную работу не только с цифровой сеткой, но и с радиостанциями, вещающими через интернет

Вполне естественно, что придется обращать внимание и на мощность динамика. Большинство радиоприемников оборудованы всего одним динамиком, который отвечает за воспроизведение всех частот – низких, средних и высоких. Тем не менее, встречаются модели, усиленные минисабвуфером или же имеющие несколько динамиков, при помощи которых звук воспроизводится в стереоформате

Тем не менее, встречаются модели, усиленные минисабвуфером или же имеющие несколько динамиков, при помощи которых звук воспроизводится в стереоформате.

Практически все приемники имеют разъемы для подключения внешних устройств. Сегодня вряд ли удастся встретить конструкцию, не оснащенную портом USB. Через него можно подключить обыкновенную флешку с музыкой и пользоваться радиоприемником в качестве плеера или компактного музыкального центра. Есть еще и разъем для наушников, однако его многие используют для подключения аудиосистемы или простых колонок.

При выборе моделей для включения в наш обзор лучших цифровых радиоприемников 2020 года мы учитывали все приведенные выше моменты

Кроме того, было принято во внимание соотношение цены и качества продукции. Мы постарались включить в наш обзор продукцию, характеризующуюся не самой высокой стоимостью, чтобы большинству наших читателей она оказалась по средствам. Итак, самое время теперь приступить к анализу полезных качеств вошедших в рейтинг моделей

Итак, самое время теперь приступить к анализу полезных качеств вошедших в рейтинг моделей.

Значение слова «приёмник»

1. Устройство для приема, собирания в него чего-л. В приемник полилась вонючая и теплая муть вместо спирта. Лесков, Загон. Он осмотрел огромный двор рыбцеха с его бетонированными приемниками, каменными и деревянными чанами, ледниками, коптильнями. Закруткин, Плавучая станица.

2. Устройство, применяемое в радиотехнике и телемеханике для приема сигналов, речи, музыки, изображений и т. п., передаваемых при помощи звуковых или электромагнитных волн. Приемник звука. Приемник излучения. || Аппарат для приема радиовещательных передач. Ванин сел в углу и стал настраивать старенький приемник. Вдалеке заиграла музыка, но сразу кончилась. Симонов, Дни и ночи.

3. Учреждение, куда временно помещают кого-л. для дальнейшего распределения. Детский приемник.Тяжелораненых санитары переносили в приемник. Шолохов-Синявский, Волгины.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

ПРИЁМНИК, а, м. 1. Аппарат, потребляющий ток, напр. электрическая лампа, электрический нагреватель, электрический двигатель и т. п. (тех.). 2. То же, что радиоприемник (радио). Ламповый п.

приёмник

1. то, что принимает, воспринимает, потребляет что-либо; техн. аппарат, потребляющий ток, например, электрическая лампа, электрический нагреватель, электрический двигатель и т. п.

2. разг. то же, что радиоприёмник ◆ На кухне работал приёмник, сквозь помехи прорывалось «Эхо Москвы» — было очень похоже на «Голос Америки». Макаревич, «Дом», 2001 г. (цитата из НКРЯ) ◆ Приёмник чуть слышно передает сводку погоды: «В столице завтра облачно, ветер переменных направлений от двух до восьми метров в секунду, возможен кратковременный дождь.» Волков Александр, «Ликвидаторы», 2001 г. // «Звезда» (цитата из НКРЯ)

Фразеологизмы и устойчивые сочетания

Я стал чуточку лучше понимать мир эмоций.

Вопрос: киноповесть — это что-то нейтральное, положительное или отрицательное?

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем — Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это — невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM —  100…108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2…3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66…74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1…2 мм. L2 имеет 2…3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50… 100 см. Настройку устройства осуществляют потенциометром R2.

«Супер-супергетеродин» или супергетеродин с двойным преобразованием частоты

В приемной части современных радиостанций в большинстве случаев применяется более сложный вид супергетеродинной схемы. Так называемый супергетеродин с двойным преобразованием частоты. От обычного супергетеродина он отличается наличием второго преобразователя и второй промежуточной частоты. Это позволяет обеспечить еще большую чувствительность, избирательность и помехозащищенность. Схема супергетеродина с двойным преобразованием похожа на схему обычного супергетеродина, но с добавлением еще одного гетеродина, смесителя, а также соответствующих каскадов усиления и фильтрации. Первая промежуточная частота обычно более высокая (10.7, 17, 21, 45… МГц), а вторая более низкая (455 кГц).

Блок-схема супергетеродинного приемника с двойным преобразованием частоты

Большинство приемников современных радиостанций и другого радиосвязного оборудования собираются по схеме супергетеродина с двойным преобразованием. В некоторых случаях, в частности в высококлассных любительских приемниках и в специальной технике, применяются супергетеродинные схемы с тройным преобразованием. Их принцип работы очевиден из названия.

Название радиодеталей

Все детали для этой статьи — выборочные, то-есть, не конкретно для какого-нибудь определенного типа транзисторного радиоприемника.

На фотоснимке \фото №1\ показана деталь из лампового радиоприемника.   Деталь из себя представляет контур гетеродина.   Перестройка частоты гетеродина осуществляется за счет конденсатора переменной емкости.

Конденсаторы переменной емкости встречаются:

  • односекционные;
  • двухсекционные;
  • трехсекционные,

— в зависимости от количества  принимаемых частот.

фото №1

двухсекционный конденсатор переменной емкости

Двухконтурный полосовой фильтр

Из чего состоит двухконтурный полосовой фильтр?   Для этого примера приведена отдельная электрическая цепь \рис. 1\.

В этой электрической цепи,  двухконтурный полосовой фильтр состоит из:

  • L1 C1;
  • L2 C2.

 рис. 1

Две катушки индуктивности \L1, L2\, как видно по схеме, — подстраиваемые, с магнитоэлектрическим магнитопроводом и с двумя отводами — от каждой катушки.

Варикапы-радиоприемников

По своей конструкции, варикап \фото №2\ можно спутать с диодом.   В общем, варикапы и являются одной из разновидностей диодов, только у варикапа немного другие функции чем у диода.

 фото №2

Варикапом, как известно, осуществляется автоматическая подстройка частоты.   То-есть, варикап  это полупроводниковый диод, на который подается управляющее напряжение от детектора.

В следующей теме будет рассказано о других радиодеталях транзисторных радиоприемников, — следите за рубрикой.

Способ преобразования частоты

А теперь нужно рассмотреть упомянутый выше способ преобразования частоты в радиоприемниках.

Допустим, есть два вида колебаний, частоты у них различные. При сложении этих колебаний появляется биение.

Сигнал при сложении то увеличивается по амплитуде, то уменьшается.

Если обратить внимание на график, который характеризует это явление, то можно увидеть совершенно другой период. И это период совершения биений

Причем этот период намного больше, чем аналогичная характеристика любого из колебаний, которые складывались

И это период совершения биений. Причем этот период намного больше, чем аналогичная характеристика любого из колебаний, которые складывались.

Соответственно, с частотами все наоборот – у суммы колебаний она меньше.

Частоту биений вычислить достаточно просто. Она равна разности частот колебаний, которые складывались. Причем с увеличением разности повышается частота биений. Отсюда следует, что при выборе относительно большой разницы слагаемых частот получаются высокочастотные биения. Например, есть два колебания – 300 метров (это 1 МГц) и 205 метров (это 1, 46 МГц). При сложении окажется, что частота биения будет 460 кГц или 652 метра.

Супергетеродинный приёмник

В супергетеродинной схеме — модулированный радиочастотный сигнал преобразуется в сигнал более низкой частоты путем смешивания входного радиочастотного сигнала с сигналом другой частоты, вырабатываемой отдельной схемой генератора, так называемого гетеродина. Частотное смешение выполняется в компоненте с нелинейной характеристикой (диод, транзистор). В результате этой операции создается искаженный сигнал, который кроме составляющих с частотой ВЧ, и гетеродинных частот, также содержит компоненты, частоты которых являются их суммой и разностью.

После смесителя вводится фильтр, настроенный на один из этих компонентов, например f h – f w.cz, называемый промежуточной частотой ПЧ. Промежуточная частота фиксированная. Перестраиваемый элемент — гетеродин. Частота местного генератора меняется в зависимости от принимаемого сигнала.

Классификация радиоприёмников [ править | править код ]

Радиоприёмные устройства делятся по следующим признакам:

  • по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;
  • по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т. д.;
  • по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая, однополосная (разные виды), импульсная (разные виды);
  • по диапазону принимаемых волн, согласно рекомендациям МККР:
  • мириаметровые волны — 100-10 км, (3 кГц-30 кГц), СДВ
  • километровые волны — 10-1 км, (30 кГц-300 кГц), ДВ
  • гектометровые волны — 1000—100 м, (300 кГц-3 МГц), СВ
  • декаметровые волны — 100-10 м, (3 МГц-30 МГц), КВ
  • метровые волны — 10-1 м, (30 МГц-300 МГц), УКВ
  • дециметровые волны — 100-10 см, (300 МГц-3 ГГц), ДМВ
  • сантиметровые волны — 10-1 см, (3 ГГц-30 ГГц), СМВ
  • миллиметровые волны — 10-1 мм, (30 ГГц-300 ГГц), ММВ
  • приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым.

по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования, регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;
по способу обработки сигнала: аналоговые и цифровые;
по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;
по исполнению: автономные и встроенные (в состав др. устройства);
по месту установки: стационарные, бортовые, носимые;
по способу питания: сетевое, автономное или универсальное.

Обзор моделей

Хотим предложить вашему вниманию несколько самых популярных и часто покупаемых моделей устройства для проводного вещания.

Россия ПТ-222

Данный трехпрограммный приемник с момента своего создания пользовался невероятным спросом. Обладает такими техническими параметрами:

  • мощность – 1 Вт;
  • вес – 1,5 кг;
  • размеры (ДхВхШ) – 27,5х17х11,1 см;
  • частотный диапазон – 160… 6300 Гц;
  • тип питания – от сети, напряжение в которой 220 Вт.

Нейва ПТ-322–1

Прибор обладает следующими техническими характеристиками:

  • мощность – 0,3 Вт;
  • вес – 1,2 кг;
  • размеры (ДхВхШ) – 22,5х13,5х0,85см;
  • частотный диапазон – 450… 3150 Гц;
  • тип питания – от сети, напряжение в которой 220 Вт

Россия ПТ-223–УКВ/FM

Данная модель трехпрограммного радиоприемника считается одной из самых удачных из всех, которые когда-либо существовали. Прибор может вещать не только привычные программы, но и ловить радиостанции с диапазоном УКВ/FM. Технические параметры:

  • мощность – 1 Вт;
  • вес – 1,5 кг;
  • размеры (ДхВхШ) – 27,5х17,5х11,1см;
  • частотный диапазон – 88… 108 Гц;
  • тип питания – от сети, напряжение в которой 220 Вт.

Литература

  • Палшков В. В. Радиоприёмные устройства. М.: Радио и связь, 1984.
  • Айсберг Е. Д. Радио?.. Это очень просто! Перевод с французского М. В. Комаровой и Ю. Л. Смирнова под общей редакцией А. Я. Брейтбарта. 2-е издание, переработанное и дополненное — М.-Л., Энергия, 1967 — (МРБ : Массовая радиобиблиотека; Вып. 622)
  • Борисов В. Г. Юный радиолюбитель / В. Г. Борисов. — 8-е изд., перераб. и доп. — М. : Радио и связь, 1992. — 409, с. — (Массовая радиобиблиотека; Вып. 1160). ISBN 5-256-00487-5
  • Поляков В. Т. Техника радиоприёма: простые приёмники АМ сигналов. — М.:ДМК Пресс, 2001, ISBN 5-94074-056-1
  • Радиоприёмники // Товарный словарь / И. А. Пугачёв (главный редактор). — М.: Государственное издательство торговой литературы, 1959. — Т. VII. — Стб. 637—667
  • Белов И. Ф., Дрызго Е. В. Справочник по транзисторным радиоприемникам. — М., Советское радио, 1970 г. — 520 с.

Принципы радиосвязи

Для радиосвязи нужны два отдельных прибора: передатчик и приёмник электромагнитных волн. Для понимания принципов их работы рассмотрим простейшие приборы, созданные немецким учёным Г.Герцем в 1886 году.

Вы видите устройство передатчика. Проволоку разрезали пополам, присоединив получившиеся отрезки к высоковольтному трансформатору. Размер воздушного промежутка между концами проволок установили таким, чтобы в нём часто проскакивали искры.

Искры – это электрический ток в воздухе. Поэтому в момент их проскакивания электроны с отрицательно наэлектризованной части проволоки устремлялись к её положительно наэлектризованной части. Это значит, что в проволоке возникал пульсирующий (переменный) ток, а вокруг неё – пульсирующее (переменное) электромагнитное поле.

Таким образом, проволоки представляют собой и передатчик, и передающую антенну. Электромагнитное поле распространяется электромагнитными волнами, поэтому может быть уловлено на расстоянии. Для этого требуется приёмник: два таких же отрезка проволоки, располагаемые параллельно антенне передатчика. Поскольку энергия волн передатчика распространяется во все стороны, а приёмник улавливает только небольшую их часть, искры в воздушном промежутке приёмника очень малы. Однако их можно видеть невооружённым глазом в темноте.

Передатчик и приёмник Герца не могли быть использованы для дальней радиосвязи. Причина этого – небольшая мощность радиоволн из-за невысокой частоты переменного тока, создаваемого искрами. Поэтому нужно было создать такой генератор тока высокой частоты, мощности которого хватило бы для радиопередач на расстоянии десятков и сотен километров. Когда эта задача была решена, стала возможна не только радиотелеграфная связь, когда слова (по буквам) передаются посредством коротких и длинных импульсов азбуки Морзе, но и радиотелефонная связь, передающая человеческий голос.

Принципиальная схема радиотелефонной связи показана на рисунке ниже. Во-первых, передатчик содержит высокочастотный генератор для обеспечения нужной мощности излучения. Именно он формирует так называемую несущую частоту, на которую настраивается приёмник. Во-вторых, передатчик содержит модулятор – устройство, изменяющее амплитуду или частоту несущей волны «в такт» с передаваемым голосом или музыкой. В-третьих, передатчик имеет передающую антенну.

Наиболее проста для понимания амплитудная модуляция. Высокочастотные колебания, созданные генератором, сначала имеют постоянную амплитуду (см. на рисунке слева). Модулятор меняет амплитуду несущей частоты «по форме» низкочастотного сигнала, поступающего от микрофона. Модулированный сигнал достигает приёмной антенны в виде волн с меняющейся амплитудой (см. на рисунке в центре).

Обратный процесс называется демодуляцией. Приёмная антенна улавливает волны сразу от множества передатчиков, работающих на разных частотах. Поэтому нужно отделить сигнал только от определённого передатчика, работающего на выбираемой нами несущей частоте. Для этого служит приёмный настроечный контур. Выделенный им сигнал «нашего» передатчика направляется в демодулятор – устройство, отделяющее полезный для слушателя низкочастотный сигнал от несущих колебаний. Именно этот сигнал и поступает в наушники или громкоговорители.

Для различных потребителей услуг радиосвязи используются разные диапазоны волн. Различают сверхдлинные, длинные, средние, короткие и ультракороткие радиоволны (см. таблицу).

Диапазон волн Частота волн Длина волн
Сверхдлинные менее 30 кГц более 10 км
Длинные 30 кГц – 300 кГц 10 км – 1 км
Средние 300 кГц – 3 МГц 1 км – 100 м
Короткие 3 МГц – 30 МГц 100 м – 10 м
Ультракороткие 30 МГц – 150 ГГц 10 м – 2 мм

Соединение элементов и запуск

А теперь давайте рассмотрим конструкцию более детально и подробно. Радио своими руками сделать несложно, главное – четко следовать схеме соединений элементов.

Рассмотрим, как производится это:

К верхнему по схеме выводу переменного конденсатора нужно припаять полупроводниковый диод. Вместо него допускается установка транзистора, но работать должен только p-n-переход. Опытные специалисты рекомендуют использовать кремниевые диоды типа Д9Б или КД350.
Ко второму выводу диода припаиваете постоянный конденсатор. Необходимо выбирать неполярный и с большой емкостью (от 3300 пФ)

Обязательно обратите внимание на то, из какого материала изготовлен элемент. Лучше, если это будет бумажный конденсатор.
Второй вывод конденсатора припаиваете к нижнему по схеме контакту переменника.
Головные телефоны включаете параллельно постоянному конденсатору.
Антенну подключаете к верхнему по схеме выводу катушки индуктивности.
Заземление соединяете с нижним выводом.

Вот и все, если не допущено никаких ошибок, приемник работает без наладки. Питания он не требует.

Для чего нужен радиоприемник?

1. Просто радио слушать

Следовательно радиоприемник должен принимать вещательные радиостанции. Радиовещательные станции транслируют свои передачи на длинных, средних и коротких волнах с амплитудной модуляцией, а на ультракоротких волнах – с частотной модуляцией.

Вещательные радиостанции можно слушать на любом радиоприемнике с нужным диапазоном частот. В городе желательно иметь радиоприемник с УКВ диапазоном (FM), поскольку сильные городские помехи будут мешать достойному приему на ДВ, CB и КВ. На загородную прогулку и для путешествий лучше выбрать радиоприемник с коротковолновым диапазоном. Чтобы звук был приятнее, лучше выбирать радиоприемник с большим динамиком (чем шире диффузор динамика, тем шире и равномернее спектр воспроизводимых звуков).

2. Слушать все, что можно

Для того, чтобы слушать разнообразные сигналы в широком диапазоне и при этом не предъявлять больших требований к качеству звуковоспроизведения, достаточно широкополосного радиоприемника-сканера. Такие радиоприемник, как правило, имеют небольшие габариты (даже есть карманные).

3. Слушать дальние радиовещательные станции (DX)

Для этого нужен радиоприемник с хорошей чувствительностью и избирательностью. Кроме этого, для приема дальних вещательных радиостанций в условиях помех желательно, чтобы в приемнике был синхродетектор (AM-sync) и режекторный фильтр (большая редкость в бытовых радиоприемниках).

Простейший детекторный приемник.

Детекторный приемник — самое простое устройство, позволяющее произвести прием радиовещательных
радиостанций, использующих амплитудную модуляцию.
Классический детекторный приемник рассчитанный на прием в диапазоне длинных и средних волн
состоит из колебательного контура, амплитудного детектора, собранного на одном диоде и высокоомных
головных телефонов (наушников, говоря по-просту).
Рисунок иллюстрирующий принцип работы амплитудного детектора

На рисунке диод «обрезает» отрицательную составляющую радиосигнала.
Затем, фильтрующая емкость производит выделение огибающей выпрямленного сигнала высокой
частоты — получается сигнал низкой частоты.

Вот так, может выглядеть схема реального детектороного приемника.

В качестве колебательного контура можно использовать конденсатор переменной емкости(C1),
от любого неисправного промышленного приемника и магнитную антенну от него же.
Причем нужно использовать только одну секцию конденсатора(из двух имеющихся).
На ферритовый стержень магнитной антенны наматывается 255 витков(катушка L1), для приема в
диапазоне длинных волн или 80 витков, для приема в диапазоне средних.
Для этого используется тонкий лакированный провод толщиной от 0,1 до 0,25 мм.
В качестве детектора используются диоды серии Д9.
Фильтрующая емкость С2 — 1000 пкФ.
Наушники — старинные головные телефоны ТОН-2.

У такого приемника нет усилителя,поэтому радиосигнал на его входе должен быть
достаточно силен.
Отсюда — обязательно подключение протяженной(не менее 10 метров) внешней антенны и заземления.
Автор, в качестве внешней антены использовал нулевой провод от электрической розетки(через конденсатор
емкостью 100 пикофарад),
а заземлением служила батарея водяного отопления.
Это конечно, очень опасно, хотя и весьма эффективно. Если перепутать нулевой провод с фазным — приемник
вполне может взорваться, в той или иной степени, не говоря об опасности поражения электрическим
током.
Внешняя антенна в этом отношении более безопасна, если предусмотреть воможность ее быстрого отключения
в случае начала грозы.