Оглавление
- Виды
- 2. Из чего сделаны солнечные батареи второго поколения
- Принцип работы солнечной батареи
- НА ЧТО ОБРАЩАТЬ ВНИМАНИЕ ПРИ ПОКУПКЕ И ВО ВРЕМЯ ЭКСПЛУАТАЦИИ
- Поликристаллические
- Как работают фотоэлементы солнечной батареи
- Площадь солнечной батареи и габариты отдельных ячеек
- Изготовление в домашних условиях
- Поликристаллические
- Напряжение
- Обзор бескремниевых устройств
Виды
Монокристаллические
Такие батареи визуально выглядят как панели с сегментами глубокого черного цвета. Получили название за счет конструкции на основе монокристаллов кремния.
Самый существенный недостаток — строгая ориентировка оптических осей кристаллов, что требует точного позиционирования панелей для получения максимальной отдачи. По этой же причине монокристаллы не терпят затенения – генерация энергии значительно снижается.
В настоящий момент обладают самым высоким КПД преобразования – около 22%. При этом стоимость тоже наиболее высокая – порядка 0.9-1.1 доллара за 1 Вт генерируемой мощности.
Поликристаллические модули
Название такие батареи получили за счет размещения на подложке множества кремниевых кристаллов с хаотически ориентированными оптическими осями. Визуально такие модули отличаются синим цветом с «морозным» рисунком.
Аморфные
Технология изготовления рабочего тела сходна с поликристаллическими, но в качестве основы выступает аморфный кремний (aSi). При КПД в пределах 8-11% отличаются высокой эффективностью работы в рассеянном свете, могут захватывать и инфракрасный диапазон. В результате обладают лучшей стоимостью – порядка 0.5-0.7 доллара за 1 Вт.
Кроме того, имеют солидное преимущество – гибкую основу. Это означает, что для монтажа не требуется жестких конструкций, материал легко клеится на поверхности любой формы.
Остальные
Модули, предлагаемые производителями, могут быть изготовлены и по другим технологиям:
- Микроморфные, отличаются высокой отдачей при рассеянном и инфракрасном излучении.
- Гибридные, использует несколько полупроводниковых материалов и обеспечивают высокий КПД преобразования (до 44%).
- Полимерные, гибкие с подложкой из полимерных материалов, абсолютные лидеры по стоимости.
Такие предложения следует тщательно изучать, некоторые из них могут оказаться намного выгоднее, чем лидирующие на рынке панели, выполненные по стандартным технологиям.
Вообще, монокристаллические панели можно рекомендовать для установки только жителям южных регионов. Остальным следует выбирать поликристаллы или панели по другим технологиям.
Следует обращать внимание не только на технологию панелей, но и на качество. В маркировке оно отображается как Grade от A (самое высокое) до D
Кроме того, рекомендуется проверить и репутацию производителя, особенно, если он выпускает не собственную, а OEM-продукцию. Сделать это можно на сайтах лабораторий качества – Калифорнийской или Европейской TUV.
2. Из чего сделаны солнечные батареи второго поколения
Следующее поколение батарей использует тот же физический принцип p/n перехода, однако создано на базе комбинаций редкоземельных элементов (реже – аморфного кремния). Вспомогательные конструкционные элементы панелей в большинстве случаев те же – металлическая основа, антиотражающая пленка и защитное стекло. Однако все чаще появляются и безрамные конструкции, а также тонкопленочные варианты, способные сворачиваться в рулоны и изгибаться под любыми углами.
Наиболее частыми полупроводниками для ячеек таких батарей служат:
- аморфный кремний a-Si;
- теллурид кадмия (CdTe);
- селенид индия/галлия/меди (CIGS).
Иногда на предложение привести примеры, из чего делают солнечные батареи тонкопленочного типа, профильные специалисты приводят и другие, более экзотические варианты. Однако их совокупная доля не превышает 0,1% и используется преимущественно в лабораторных исследованиях.
Название «тонкопленочные» происходит от значительно меньшей толщины рабочих слоев – от 1 до 3 мкм, что почти в 100 раз меньше, чем у кремниевой «классики». КПД при идеальных условиях тонких пленок составляет 16-20%. Однако при рассеянном свете и/или больших углах падения излучения панели CdTe / CIGS могут быть более эффективны.
Принцип работы солнечной батареи
В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.
При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.
Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.
Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).
Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.
Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.
Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.
Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.
И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.
Термальная солнечная электростанция в Испании (город Севилья)
Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность
Затем важно, каким запасом энергии они обладают
Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.
НА ЧТО ОБРАЩАТЬ ВНИМАНИЕ ПРИ ПОКУПКЕ И ВО ВРЕМЯ ЭКСПЛУАТАЦИИ
При покупке обращать нужно внимание на силу тока. Поскольку чаще всего понадобится заряжать мобильные устройства, то силы тока в 0,5А будет достаточно. Правда, если солнечного света будет много
Крепление панели солнечной гибкой батареи может быть разным. Некоторые панели крепятся присосками, что делает их монтаж к гладим поверхностям очень удобным. Например, на крыше автомобиля или стекла витрины. Все без исключения модели снабжаются небольшими отверстиями в чехлах, чтобы было удобным крепить к рюкзаку. При использовании следует не забывать, что самым оптимальным положением гибкого элемента будет перпендикулярный наклон к солнечным лучам. Также нужно не использовать батарею через стекло – теряется до 35% мощности. КПД для элементов такого типа – аргумент, на котором часто спекулируют недобросовестные продавцы и производители. Последняя швейцарская новинка имеет КПД 17,7%. Так что, если придется услышать уверения продавца о КПД 25%, а то и все 50%, можно смело разворачиваться – вам хотят продать то, что еще не придумано в мире. На сегодняшний день появилось много контор и фирм, которые производят гибкие элементы на заказ. В таких учреждениях можно выбрать подходящую мощность и размер, а также, соответственно, вес батареи
Правда, если солнечного света будет много. Крепление панели солнечной гибкой батареи может быть разным. Некоторые панели крепятся присосками, что делает их монтаж к гладим поверхностям очень удобным. Например, на крыше автомобиля или стекла витрины. Все без исключения модели снабжаются небольшими отверстиями в чехлах, чтобы было удобным крепить к рюкзаку. При использовании следует не забывать, что самым оптимальным положением гибкого элемента будет перпендикулярный наклон к солнечным лучам. Также нужно не использовать батарею через стекло – теряется до 35% мощности. КПД для элементов такого типа – аргумент, на котором часто спекулируют недобросовестные продавцы и производители. Последняя швейцарская новинка имеет КПД 17,7%. Так что, если придется услышать уверения продавца о КПД 25%, а то и все 50%, можно смело разворачиваться – вам хотят продать то, что еще не придумано в мире. На сегодняшний день появилось много контор и фирм, которые производят гибкие элементы на заказ. В таких учреждениях можно выбрать подходящую мощность и размер, а также, соответственно, вес батареи.
https://youtube.com/watch?v=T_3Fq3YnxMk
Гибкие батареи, которые работают от солнечного света, действительно являются очень любопытной и перспективной новинкой. Скорее всего, такие элементы очень скоро заполнят рынок, так как наблюдается общее снижение цен на этот товар. Большие и малые, широкие и узкие, на большую или меньшую мощность – они все потребуют денег при покупке. Дальше они работают совершенно бесплатно и по несколько десятилетий. опубликовано econet.ru
Присоединяйтесь к нам в , , Одноклассниках
Поликристаллические
Описание
Все кремниевые устройства слишком реагируют на перегрев. Температура, рекомендуемая для измерения электрогенерации, составляет 25 градусов. Даже при ее увеличении всего на градус производительность уменьшается на 0,5%.
Чистота кремния намного ниже, чем у рассмотренных выше, также допускается присутствие примесей и инородных включений. Это снижает себестоимость. Для этого вида панелей металл просто разливается в формы. Затем, используя специальные приемы, формируют кристаллы, направленность которых контролировать не нужно.
Остывший кремний режут на слои, обрабатывая их по специальному алгоритму.
Достоинства аморфного кремния в полной мере раскрываются в тени и с наступлением облачных дней и практически незаметны в солнечную погоду.
Не нужны им и поворотные механизмы, поскольку крепятся они стационарно.
Стоит такая разновидность панелей меньше, чем ориентированные. Эффективность их падает на 20% после 20-летнего использования.
Недостатки
Они, понятно, есть:
- Более низкий КПД;
- Необходимо большая площадь для монтажа.
В последние годы, благодаря новым исследованиям и появляющимся технологиям, КПД неуклонно растет и у некоторых панелей достигает 20%.
Как работают фотоэлементы солнечной батареи
Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.
Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».
В действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом. Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.
Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.
Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток
Поэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.
Рекомендуется, солнечные батареи устанавливать на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.
Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.
Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.
Площадь солнечной батареи и габариты отдельных ячеек
Гелио модуль представляет собой гибкую или жесткую конструкцию прямоугольной формы, основу которой составляют ряды полупроводниковых ячеек. Каждая из них генерирует напряжение около 0,5-0,6V и может иметь различные типоразмеры. Наиболее распространены следующие варианты габаритов (в миллиметрах):
- 52 × 19;
- 52 × 38;
- 52 × 150;
- 80 × 150;
- 26 × 156;
- 125 × 125;
- 156 × 156.
Например, модуль Sunways ФСМ-270П из 60 ячеек (по 10 в длину и 6 – ширину) размером 156 × 156 мм каждая имеет размеры, с учетом рамы, 1640 × 992 мм. Площадь такой солнечной панели составит чуть больше 1,6 м2.
При монтаже необходимо устанавливать модули таким образом, чтобы не допустить частичного затенения одним рядом батарей соседнего. В связи с этим на одну панель 250 – 400 ватт обычно выделяется 1,5 — 2 квадратного метра пространства.
Изготовление в домашних условиях
Комплексная гелиосистема потребует немалого вложения средств. Но все потраченные деньги вернутся в будущем. Срок окупаемости в зависимости от количества модулей и способов использования солнечной энергии будет разниться. Но все же можно уменьшить первоначальные расходы не за счет потери качества, а за счет разумного подхода к выбору компонентов солнечной батареи.
Если вы неограничены в площади установки солнечных модулей, и в вашем распоряжении есть приличное пространство, то на 100 кв. м вы можете установить поликристаллические солнечные батареи. Это позволит сэкономить немалую сумму в семейном бюджете.
Не старайтесь покрыть полностью крышу солнечными батареями. Для начала установите пару модулей и подключите к ним ту технику, которая работает от постоянного напряжения. Нарастить мощность и увеличить количество модулей можно всегда со временем.
Если вы ограничены в бюджете, то можете отказаться от установки контроллера – это вспомогательный элемент, который необходим для отслеживания уровня заряда батареи. Вместо него, можно дополнительно подсоединить к системе еще один аккумулятор – это позволит избежать перезаряда и увеличит емкость системы. А для контроля заряда можно использовать обычные автомобильные часы, которыми можно измерять напряжение, да и стоят они в разы дешевле.
Поликристаллические
Описание
Все кремниевые устройства слишком реагируют на перегрев. Температура, рекомендуемая для измерения электрогенерации, составляет 25 градусов. Даже при ее увеличении всего на градус производительность уменьшается на 0,5%.
Чистота кремния намного ниже, чем у рассмотренных выше, также допускается присутствие примесей и инородных включений. Это снижает себестоимость. Для этого вида панелей металл просто разливается в формы. Затем, используя специальные приемы, формируют кристаллы, направленность которых контролировать не нужно.
Остывший кремний режут на слои, обрабатывая их по специальному алгоритму.
Достоинства аморфного кремния в полной мере раскрываются в тени и с наступлением облачных дней и практически незаметны в солнечную погоду.
Не нужны им и поворотные механизмы, поскольку крепятся они стационарно.
Стоит такая разновидность панелей меньше, чем ориентированные. Эффективность их падает на 20% после 20-летнего использования.
Недостатки
Они, понятно, есть:
- Более низкий КПД;
- Необходимо большая площадь для монтажа.
В последние годы, благодаря новым исследованиям и появляющимся технологиям, КПД неуклонно растет и у некоторых панелей достигает 20%.
Напряжение
Как правило, панели выпускаются с выходным напряжением 12 В. Но для заряда аккумуляторов необходимо иметь в системе напряжение выше, чем из рабочее, да и преобразование из постоянного в переменное выгоднее по КПД производить с более высоких значений.
Какое выходное напряжение на Ваших солнечных панелях?
12 В / 24 В36 В / 48 В
Поэтому принята стандартная практика использовать напряжения:
- 12 В для систем с потреблением на более 1 кВт.
- 24 В или 36 В – при потреблении до 5 кВт.
- 48 В – при мощности свыше 5 кВт.
Для получения таких напряжений используют последовательное включение панелей (наборов панелей).
Обзор бескремниевых устройств
Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.
Солнечные панели из редких металлов
Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.
Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.
Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов
Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).
Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.
КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.
Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.
В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.
Полимерные и органические аналоги
Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.
Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.
При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.
Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.
Преимуществами органических солнечных панелей являются:
- возможность экологически безопасной утилизации;
- дешевизна производства;
- гибкая конструкция.
К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.