Оптимальная длина кабельной линии 0,4 кв

Оглавление

Монтаж системы мониторинга под напряжением

Рис. 10. Монтаж измерительного блока на проводах ЛЭП

Эксплуатация электроустановок и электрооборудования электрических сетей без их отключения становится в настоящее время основным способом обслуживания, и она широко применяется в различных странах мира на линиях электропередачи всех классов напряжения — от 0,38 до 750 кВ. Эта технология была разработана в СССР еще в 50-е годы и широко использовалась на практике. Применение этой системы позволяет сохранять нормальный режим работы электрических сетей при выполнении монтажа дополнительного оборудования и регламентных работ. Прогрессивность работ под напряжением дает экономические преимущества при сохранении безопасности операторов.

Рис. 11. Монтаж измерителя Donut на проводе ЛЭП

Для проведения монтажных работ на ВЛ под напряжением используются гидроподъемники, система изоляции, электропроводящий комплект спецодежды, образующий клетку Фарадея, внутри которой действие поля сведено к минимуму (рис. 10). Вся система гарантирует защиту электромонтера от протекания по нему тока ниже порога чувствительности. Это достигается выравниванием потенциалов рабочего места в системе «провода–подъемник–оператор» и шунтированием с одновременным применением надежной изоляции рабочего места от земли или заземленных элементов опоры. При этом от воздействия электрического поля электромонтер защищается электропроводящим комплектом спецодежды. Для удобства и технологичности монтажа на проводе корпус измерителя, в котором размещаются датчик тока, питающий трансформатор и блок электроники, выполняется из двух половинок. Обе половинки корпуса соединены посредством шарнирного механизма.

Управление шарнирным механизмом при монтаже измерителя тока на проводе ЛЭП производится посредством специальной поворотной штанги с шестигранным ключом. Перед монтажом, поворачивая ключ против часовой стрелки, производится раздвигание секций корпуса. Далее измеритель цепляется на провод ЛЭП. Фиксация корпуса измерителя тока на проводе производится поворотом технологического ключа по часовой стрелке. При этом обе половинки корпуса сходятся, замыкая контур вокруг провода. Встроенные муфты обеспечивают жесткую фиксацию корпуса измерителя тока на проводе ЛЭП (рис. 11).

Габариты ВЛ

Основным документом, в котором прописываются требования к габаритам, является «Правила устройства электроустановок» (ПУЭ). В этой нормативной документации предоставляется отдельная глава, которая посвящается рассматриваемому вопросу. Разберем основные моменты по заданному направлению.

Определения

Габариты ВЛ – это предельно допустимые расстояния от проводов до поверхности земли и различных объектов, сооружений и устройств. Соблюдение этих требований обеспечивает правильное и безопасное использование электроустановки для передачи и распределения электроэнергии. В понятие включается:

  1. Высота подвеса – расстояние от места крепления проводов на изоляторе до земли. Габаритом над землей называется величина от низшей точки пролета до земли.
  2. Стрела провеса – это разница от подвеса ЛЭП и проводов в наименьшей точке (посередине пролета) до земли. Величина зависит от температуры воздуха, пролета, марки опор.
  3. Существует понятие габарит при пересечении и сближении. Это величины, которые регламентируют длину по вертикали до поверхности дорог, рек, пересекаемых ВЛ, а также наименьшие величины до объектов и строений.

Длина промежуточного пролета – это величина между смежными опорами. Для ВЛ 0,4 кВ этот показатель составляет 30-50 метров в зависимости от сечения, климата, типов опор.

Допустимые величины по ПУЭ

Габариты ВЛ зависят от нескольких факторов, в том числе от напряжения линии, от проходимости в городе или на пересеченной местности, по используемым материала. Рассмотрим различные примеры далее:

  • Для ВЛ 0,4 кВ согласно ПУЭ следующие – до земли не менее 6 метров. Ответвление ввода через дорогу обязано сопровождаться высотой не менее 3,5 м. От проводов на фронтоне до земли величина составляет не меньше 2,75 метра. При пересечении с железной дорогой, трамвайной или троллейбусной линией не менее 7,5 м, до других проводов не менее 1,5 м. Стрела провеса для линии до 1000 В при пролете 35-45 метров последняя не превышает 1,2 метра.
  • Габариты ВЛ 10 кВ регламентируются ПУЭ. Минимальное расстояние до земли составляет не менее 7 м. При пересечении с железной дорогой, трамвайной или троллейбусной линией не менее 9,5 м, до провода не менее 3 метров. Стрела провеса ВЛ 10 киловольт не превышает 1,5 м.

Строительство ВЛ любого напряжения над зданиями не допускается. При совместной подвеске разного напряжения между фазами соблюдается расстояние не менее 1,2 метра.

Маркировка

Табличка, содержащая паспортные данные трансформаторной подстанции, закреплена на лицевых сторонах дверей:

  • краткое наименование предприятия-изготовителя;
  • наименование и обозначение изделия;
  • высшее напряжение, кВ;
  • низшее напряжение, кВ;
  • максимальная мощность устанавливаемого трансформатора, кВА;
  • заводской номер;
  • масса в кг;
  • дата (год) изготовления;
  • обозначение технических условий.

На дверях РУ и камеры трансформатора нанесены знаки безопасности и диспетчерское наименование, маркировка в соответствии с требованиями ТУ. На корпусе КТП-1000 наносится диспетчерский номер ТП и телефон энергоснабжающей организации.

Основные правила техники безопасности при нахождении в охранной зоне ЛЭП

Существуют ситуации, когда обойти охранную зону ЛЭП не представляется возможным, например, на пересечённой местности или близком расположении рядом с линией электропередачи водоёмов. В этом случае следует придерживаться простых правил техники безопасности, и по возможности долго не находиться на территории прохождения ЛЭП.

К лежащему на земле проводу ни в коем случае нельзя приближаться. Визуально определить находится он под напряжением или нет невозможно, поэтому оптимальная и безопасная дистанция – не менее 8 м. Если же расстояние от человека до кабеля меньше, то следует максимально быстро покинуть опасную зону, но мелкими шагами, не отрывая стоп от земли, так как в этой ситуации появляется пошаговое напряжение, которое может иметь критическое значение для жизни или здоровья.

Если при прохождении охранной зоны воздушной ЛЭП замечен сильно провисающий провод, то передвигаться под ним нельзя. Конструкция воздушной ЛЭП предусматривает её расстояние от кабелей до земли, учитывая такой важный фактор, как величина рабочего напряжения. Поэтому нарушение дистанции от провода до земли может привести к удару электрическим током.

Перед тем как пройти охранную зону ЛЭП, следует визуально убедиться в отсутствии неисправностей линии. Искрение или кратковременная дуга означают, что линия электропередачи в аварийном состоянии и нахождение рядом с ней опасно для жизни.

Вредны ли ЛЭП для здоровья человека и окружающей среды

Высоковольтные линии электропередач так или иначе влияют на наше здоровье, на растения и животных, технику связи и т.д. Но какой именно вред от ЛЭП, читайте в статье.

  • Виды ЛЭП по напряжению
  • Влияние на здоровье человека
  • Влияние на окружающую среду и экологию
  • Вред технике и средствам коммуникации
  • Заключение

Повторное заземление нулевого провода: характеристики

Повторное заземление нулевых проводников, производится различными способами. Например, на вводе в здании, на деревянных и бетонных столбах ЛЭП и освещения. Для данного заземления, используют два типа заземлителей.

Виды заземлителей:

  • Естественный;
  • Искусственный.

Стоит отметить, что значения сопротивления естественных заземлителей, никак не определяются и в различных условиях, данные показатели могут изменяться. Поэтому, чтобы задать нужные параметры заземляющей конструкции, используют искусственные заземлители.

В качестве основной системы заземления, применяется схема TN, которая в свою очередь, подразделяется на три типа: TN – C, TN – S, TN – C – S.

Система TN – C, является устаревшей. При данной схеме, электроэнергия к потребителям, подается по двухжильным кабельным линиям, нулевой проводник, которого подключается к нейтрали, которая заземлена на подстанции. Данный проводник выполняет две функции и является PEN проводником.

Стоит отметить, что данная система, не может должным образом обеспечить защиту человека, так как нет заземления. Поэтому в качестве заземлителя, используют защитный ноль, который прокладывается до щитка и зануляется.

Практичной, недорогостоящей и отвечающей правилам ПУЭ, является система TN – C – S. Такое подключение, производится посредством фазного и PEN проводника, который идет от трансформаторной подстанции (КТП) и разделяется на PE и N проводники только при вводе в здание.

Система TN – S, является самой практичной, но в свою очередь достаточно дорогостоящей. При прокладывании данных линий, применяются пятижильные кабели, жилы которых отдельно подключаются на подстанции.

Наиболее популярные типоисполнения щитов ВРУ

Щит ВРУ АВР (ВРУ с двумя вводами)

Если проектом электроснабжения предусмотрено резервирование питания, в щит ВРУ добавляют блок управления АВР, который может быть реализован, как на контакторах, так и на автоматах с моторным приводом. Таким образом щит ВРУ с АВР может одновременно питать, распределять и обеспечивать резервное электроснабжение потребителей.

ВРУ в составе ГРЩ

Главный распределительный щит ГРЩ может включать в себя вводно-распределительную панель. Это экономит пространство в щитовой и позволяет организовать единую защиту и управление распределением электроэнергии

Шкаф ВРУ с рубильником

Обязательным условием в щите ВРУ является обеспечение видимого разрыва на вводе электроустановки. Разрыв цепи обеспечивается рубильником или разъединителем. Рубильник в ВРУ обычно подбирается под номинальные токи или на номинал выше. Самые популярные рубильники ВР-32 или РЕ-19.

Щит ВРУ с перекидным рубильником

Если к ВРУ подходит 2 питающих кабеля и нет необходимости автоматически переключаться между ними, на вводе ставят два реверсивных (перекидных) рубильника, соединенных по схеме «крест», чтобы обеспечить питание определенных особо важных потребителей по группам. Если схема еще проще — можно просто поставить на вводе ВРУ один реверсивный рубильник и переключаться между вводами на одну общую нагрузку.

Конструктивное исполнение

КТП-1000 представляет собой сборно-сварную металлоконструкцию. Корпус подстанции выполнен с каркасом из стальных профилей, имеющих стойкое покрытие, обеспечивающее повышенную коррозийную стойкость и современный дизай. Корпус подстанции обшит оцинкованными листами толщиной 1,2 мм.

Возможно изготовление КТП-1000 «северного» исполнения.

Корпус КТП-1000 как правило, представляет собой:

  • распределительное устройство высокого напряжения РУВН-6(10) кВ с ячейками типа КСО,
  • отсек силового трансформатора,
  • распределительного устройства низкого напряжения РУНН-0,4 кВ с ячейками типа ЩО.

Компоновка КТП-1000 и ее габариты — зависят от схемы электрических соединений, количества ячеек и трансформаторов. Отсеки КТП-1000 разделены металлическими перегородками, и имеют отдельные двери, запирающиеся замками.

Для вентиляции и охлаждения установленных внутри отсека аппаратов — двери имеют проемы с жалюзи. В отдельных случаях камера трансформатора может быть снабжена осевым вытяжным вентилятором.

В РУВН и РУНН подстанции ячейки располагаются в один ряд с образованием коридора обслуживания. Модули КТП-1000 комплектуются приборами освещения, отопления и вентиляции с готовой разводкой проводов, что позволяет выполнять монтаж подстанции в более короткие сроки.

Высоковольтный ввод, по заказу, выполняется воздушным, с установкой на крыше отсека проходных изоляторов с ОПН или кабельным, через пол или стены. Низковольтные выводы могут быть кабельными или воздушными, с установокой на крыше КТП-1000 рамы с изоляторами для ВЛ-0,4 кВ.

Основание КТП-1000 представляет цельносварную конструкцию из профилей, которая имеет сплошной или просечной настил с маслоприемным отверстием для аварийного сброса масла из трансформатора и отверстиями для ввода и вывода кабелей. Прочность основания трансформаторного модуля рассчитана на установку одного силового трансформатора мощностью до 2500 кВА.

РУВН на КТП мощностью свыше 250 кВА может выполняться, на базе камер серии KCO-3хх-КН, а свыше 1000 кВА могут быть выполнены на базе КСО-2хх-КН с вакуумными выключателями.

РУНН, комплектуются панелями ЩО-70-КН как с автоматическими выключателями на вводе и отходящих линиях, так и с рубильниками и предохранителями.

В РУНН может быть предусмотрена возможность установки:

  • учета электроэнергии;
  • автоматического или местного управления уличным освещением;
  • автоматических выключателей для собственных нужд (освещения, отопления и вентиляции).

Присоединение КТП-1000 к воздушной линии ВЛ-6(10) кВ, как правило, осуществляется через трехполюсный линейный разъединитель типа РЛНД-10 или аналогичный ему.

В качестве силовых трансформаторов применяются трансформаторы как с сухой так и с масляной основной изоляцией обмоток.

Перед отправкой все модули собираются, прокладываются все межмодульные связи, производится маркировка и комплексное тестирование электрооборудования. По заказу в КТП-1000 может выполняется: электроосвещение; электроотопление; естественная или принудительная вентиляция; сплит-система кондиционирования и пожарная сигнализация.

Самонесущие изолированные провода: надежность, качество и безопасность

Задачу поддержания технического состояния сетей на современном уровне невозможно решить без применения на ВЛ новых, более совершенных конструкций и технологий. Взамен традиционных конструктивных исполнений с неизолированными проводами, которые обладают высокой аварийностью, низкой надежностью  получили линии с изолированными проводами (СИП).     

Основу воздушной линии с изолированными проводами (ВЛИ) составляют изолированные фазные провода, скрученные в жгут вокруг изолированного или неизолированного нулевого несущего провода (СИП), при этом все механические воздействия на провода воспринимаются несущим проводом.

По сравнению с неизолированными проводами СИП имеют большие преимущества:

  • возможность совместной подвески на опорах с телефонными линиями;
  • возможность применения опор действующих типовых проектов и опор меньшей высоты (согласно ПУЭ подвеска СИП разрешена на высоте 4 м, а неизолированных проводов на высоте 6 м);
  • сокращение эксплуатационных расходов за счет исключения систематической расчистки трасс, замены поврежденных изоляторов, сокращения объемов аварийно-восстановительных работ;
  • высокая безопасность обслуживания, отсутствие риска поражения током при касании проводов, находящихся под напряжением;
  • практическая невозможность короткого замыкания между фазными проводами и нулевым проводом или на землю;
  • меньший вес и большая длительность налипания снега, повышенная надежность в зонах интенсивного гололедообразования, уменьшение не менее, чем на 30% гололедноветровых нагрузок на опоры;
  • снижение падения напряжения вследствие малого реактивного сопротивления (0,1 Ом/км по сравнению с 0,35 Ом/км для неизолированных проводов);
  • возможность прокладки по фасадам зданий;
  • исключение опасности возникновения пожаров в случае падения проводов на землю;
  • уменьшение безопасных расстояний до зданий и других инженерных сооружений;
  • возможность совместной подвески на одной опоре самонесущих изолированных проводов 0,4/10 кВ и самонесущего изолированного кабеля на напряжение 10-35 кВ;
  • использование этих проводов практически исключает хищения: как электроэнергии, так и самих проводов.

СИП, как часть основы безопасности

Сам термин расшифровывается как «самонесущий изолированный провод». Его применение позволяет создавать условия для точной передачи и распределения электроэнергии. Решение применения СИП стало основой, благодаря которой строители смогли отказаться от неизолированных проводов. Замена позволила осуществить следующие преимущества:

  • конструкция СИП является более устойчивой к различным внешним факторам;
  • устраняется возможность замыкания проводов, при контакте на поверхности;
  • появляется возможность значительного снижения стоимости обслуживания системы в целом;
  • нет необходимости в установке дополнительного оборудования, сопутствующего корректной работы СИП.

Единственным препятствием, которое может возникнуть при применении данного типа изолированного незащищенного провода – температурный режим. Так, их монтаж запрещается при показателях термометра ниже -10 градусов. К дополнительным рекомендациям относится отсутствие сильного ветра, так как его порывы могут значительно затруднить процесс фиксации. Главное отличие ВЛИ от ВЛ составляет упрощенная система обслуживания и общий процент безопасности применения. При необходимости ремонтных работ, определенный участок может быть обесточен. Касательно стоимости работ, благодаря повышенной ремонтопригодности, она значительно превосходит показатели своего предшественника.

Воздушные линии электропередач напряжением от 0,4 до 1 кВ

Для воздушных линий электропередач напряжением от 0,4 до 1 кВ необходимо минимальное значение сопротивления. Кроме того, требуется, чтобы материал обладал механической прочностью и не портился от воздействия влаги.

Воздушные линии этого типа получили заметное распространение в небольших населенных пунктах вследствие своей бюджетной стоимости.

Линии электропередачи этого типа преимущественно выпускают из стали и алюминия вместо относительно дорогой меди.

Использование алюминия ограничено его небольшой прочностью, следствием чего становится большее значение стрелы провеса, что влечет либо меньшее расстояние между опорами, либо увеличение их высоты

Площадь сечения проводов, используемых для передачи электричества с данными показателями напряжения, должна составлять как минимум:

  • 4 мм2 для стальных однопроволочных;
  • 10 мм2 для изготовленных из сплава стали и алюминия;
  • 16 мм2 для алюминиевых.

Воздушные линии электропередач напряжением от 0,4 до 1 кВ снабжаются заземляющими устройствами согласно нормативам.

Грозозащитное заземление требуется установить через каждые 120м на опорах, а также:

  • на установленной от конца линии за 50м опоре;
  • на конечной опоре с вводным ответвлением;
  • на опоре с выходом в жилое помещение;
  • на опоре, которая находится на пересечении линий высокого напряжения.

Заземление выполняется на уличных фонарях щитах и всех металлоконструкциях.

Воздушная линия электропередачи

Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:

  • провода;
  • защитные тросы;
  • опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды;
  • изоляторы, изолирующие провода от тела опоры;
  • линейная арматура.

За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоцепные, как правило 2-цепные.

Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.

Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной

Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.

Рис. 2. Примеры расположения фазных проводов и грозозащитных тросов на опорах: а – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»

Таблица 1. Конструктивные параметры воздушных линий

Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.

Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.

Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи: 1, 2, 3 – фазные провода

Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).

Рис. 4. Транспозиционная опора

Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.

Определение напряжения по внешнему виду

Следующий этап — определение мощностей ВЛ.

Как же узнать напряжение на ЛЭП по её внешнему виду? Легче всего это сделать по количеству проводов и по числу изоляторов. Самый простой способ — определение по изоляторам.

Существуют ВЛ разных классов напряжения. Рассмотрим поочередно каждую.

ЛЭП на 0,4 киловольта (400 Вольт) — низковольтные, встречающиеся во всех населенных пунктах. В них всегда используются штыревые изоляторы из фарфора или стекла. Опоры изготавливают из железобетона или дерева. В однофазной линии два провода. Если фазы три, проводников будет четыре и более.

Далее идут ЛЭП на 6 и 10 киловольт. Визуально они неотличимы друг от друга. Здесь всегда по три провода. В каждом используется два штыревых фарфоровых или стеклянных изолятора или один, но большего номинала. Используются эти трассы для подведения питания к трансформаторам. Минимальное расстояние до частей, проводящих ток, здесь составляет 0,6 м.

Часто в целях экономии совмещают подвеску проводников 0,4 и 10 кВ. Охранной зоной таких трасс является расстояние 10 м.

В ЛЭП на напряжение 35 кВ, используются подвесные изоляторы в количестве от 3 до 5 штук в гирлянде к каждому из трёх фазных проводов.

Обычно такие воздушные магистрали через территорию городов не проходят. Допустимым считается расстояние – 0,6 м, а охранная зона определяется 15 метрами. Опоры должны быть железобетонными или металлическими, с разнесенными друг от друга на допустимое расстояние проводниками, несущими ток.

В ЛЭП на напряжение 110 кВ монтаж каждого из проводов осуществляется на отдельной гирлянде из 6-9 подвесных изоляторов. Минимально близким к проводникам, является расстояние в 1 метр, а охранная зона определяется 20 метрами.

Материалом для опоры служит железобетон или металл.

Если напряжение 150 кВ, применяют 8-9 подвесных изоляторов на каждую гирлянду в ЛЭП. Расстояние 1,5 м до проводников тока считается в этом случае минимальным.

Когда напряжение 220 кВ, число используемых изоляторов находится в пределах от 10 до 40 единиц. Фаза передаётся по одному проводу.

Линии используют для подведения электроэнергии к крупным подстанциям. Наименьшее расстояние приближения к проводникам составляет 2 м. Величина охранной зоны – 25 м.

В последующих классах высоковольтных ЛЭП появляется отличие по числу проводов на фазу.

Если произведен монтаж двух проводников на одну фазу, а изоляторов в гирляндах по 14, перед вами магистраль 330 кВ.

Минимальным расстоянием до токоведущих частей в ней считается 3,5 м. Необходимое увеличение охранной зоны до 30 м. Материалом для опор служит железобетон или метал.

Если фаза расщепляется на 2-3 проводника, а подвесных изоляторов в гирляндах по 20, то напряжение ВЛ составляет 500 кВ.

Охранная зона в этом случае ограничивается 30 метрами. Опасной считается дистанция менее 3,5 м до проводов.

В случае разделения фазы на 4 или 5 проводников, соединение которых кольцевое или квадратное, и присутствия в гирляндах 20 и более изоляторов, напряжение ВЛ составляет 750 кВ.

Охранная территория таких трасс — 40 м, а приближение к токопроводящим частям ближе 5 м опасно для жизни.

В России есть единственная в мире ЛЭП, напряжение которой 1150 кВ. Фазы в ней делятся на 8 проводов каждая, а в гирляндах присутствуют 50 и более изоляторов.

К этой трассе не стоит приближаться более чем на 8 метров. Увидеть такую высоковольтную линию можно, например, на участке магистрали «Сибирь – Центр».

Получить подробную информацию о любой ВЛ, её местоположении можно на интерактивной карте в сети интернет.

С

САЦ — ситуационно-аналитический центр 

СБП — система бесперебойного питания 

СЗ — степень загрязненности атмосферы 

СИ — средство измерений 

СИП — самонесущий изолированный провод 

СКРМ — средства компенсации реактивной мощности 

СН — среднее напряжение 

СОЕВ — система обеспечения единого времени 

СОПТ — система оперативного постоянного тока 

СОУЭ — система оповещения и управления эвакуацией людей при пожаре 

СПЗ — совмещенное производственное здание 

СПЭ — сшитый полиэтилен 

СРН — средство регулирования напряжения 

ССПИ — система сбора и передачи информации 

ССЭСК — сеть связи электросетевого комплекса 

ССС — сеть спутниковой связи 

СТАТКОМ — статический компенсатор на базе преобразователей напряжения 

СТК — статический тиристорный компенсатор 

СТО — стандарт организации 

СУОТ — система управления охраной труда 

СУПА — система управления производственными активами 

СУ (ЭСК) — ситуационное управление в электросетевом комплексе 

Проектирование ВЛ разных классов напряжения

выполняет проектирование ВЛ разного напряжения.

ВЛ 0,4 кВ

– ЛЭП низкого напряжения, используемые для электроснабжения конечных потребителей и передачи электроэнергии на небольшие расстояния – в поселках, микрорайонах, сельской местности, для подключения отдельно стоящих объектов. Проектирование ВЛ 0.4 кВ обязательно предусматривает расчет потерь и разработку решений для их минимизации.

ВЛ 6, 10 и 35 кВ

– ЛЭП среднего напряжения. Проектирование ВЛ 6 кВ, 10 и 35 кВ подчинено общим требованиям к конструкции, расчетным параметрам и условиям эксплуатации ЛЭП этого класса напряжения. Однако допустимые потери в электросетях разного напряжения будут отличаться, что требует подготовки индивидуальных решений по их минимизации. Проектирование ВЛ 35 кВ при ее отнесении к высоковольтным линиям (35-330 кВ) осуществляется согласно требованиям, предъявляемым к ЛЭП этого класса.

ВЛ 110 кВ

– линии высокого класса напряжения, способны передавать электроэнергию в обоих направлениях. Проектирование ВЛ 110 кВ предусматривает предварительное проведение изыскательных работ, подготовку технико-экономического обоснования, соответствие ЛЭП экологическим требованиям, Нормам Технологического Проектирования (НТП), СНиП и ПУЭ. Проекты подлежат обязательному согласованию в контрольно-надзорных инстанциях.

Стоимость проектирования воздушных ЛЭП разного класса напряжения определяется индивидуально. Допускается оптимизация проекта, не влияющая на соблюдение нормативных требований.

Какие марки проводов использовать?

Марки проводов для линий электропередач бывают разными и зависят от напряжения, которое будет по ним передаваться. К примеру, для воздушных линий электропередач свыше 1000В применяют голые провода и тросы, устойчивые воздействиям атмосферы. Ранее, более часто использовались медные провода, но сейчас более популярны алюминиевые и стальные. Чтобы разобраться в маркировке проводов стоит помнить, что все провода марки А изготовлены из алюминия или включают его в свой состав. М – это медные марки проводов, Б – бронзовые. Какую марку провода выбрать должен посоветовать специалист, исходя из множества факторов влияющих на строительство линий электропередач.

Воздушное ответвление провода от ВЛ

Максимально допустимое расстояние от вводного устройства до опоры воздушной линии — 25 метров. В том случае если расстояние больше необходима установка промежуточных опор, их можно сделать из дерева, пропитанного на основании антисептиком, диаметр промежуточной опоры должен быть не менее 12 см.

Высота воздушного ответвления над пешеходными дорогами должна быть не менее 3,5 метра от земли. Над автомобильными дорогами — не менее 6 метров.

Самая нижняя точка крепления изоляторов для ввода кабеля в дом  не должна допускать провиса проводов ниже 2,8 м от земли. Под линией воздушного ответвления проводов не должно быть высоких кустарников, деревьев и нагромождений.

Расстояние токонесущих жил на вводе, до выступающих частей здания типа балконов, козырьков, должно быть не менее 0,2 метра.  Соединение с линейными проводами на опоре выполняют скруткой или специальными зажимами. Ввод кабеля в дом выполняется с помощью трубки.

В низкие строения делают трубостойкий ввод, через крышу. Расстояние от крыши до проводов должно быть не менее 2 м, стальную трубостойку обязательно заземляют.

Провода от изоляторов до щитка со счетчиком и автоматами должны быть цельными (никаких присоединений) и подключаться к главному автомату, рубильнику или зажимам электросчетчика.

Компании по строительству воздушных линий электропередач

В России в этой отрасли работают следующие компании:

  • Уральская энергетическая строительная компания;
  • Русэнергомир (осуществляет полный цикл, относящихся к возведению ЛЭП);
  • Э-Лайн (выполняет строительство высоковольтных систем и их монтаж «под ключ»);
  • МастерЭнергоСервис ведет строительство ЛЭП в Москве и Московской области.

Все работы проводят бригады электриков, имеющие специальный допуск.

Больше о воздушных линичх электропередач напряжением 0.4 КВ, 1 , 10, 110, 500 КВ, можно узнать на выставке «Электро».

Воздушные линии электропередач нормы и правилаВоздушные линии электропередачКабельные линии электропередач

Проектирование воздушных ЛЭП

Проектирование воздушных линий электропередачи выполняется в соответствии с нормативными требованиями, правилами и стандартами: ПУЭ (устройство электроустановок), СНиП (проектирование опор ВЛ), ведомственные и другие акты.

Стандартизация абсолютного большинства строительно-монтажных работ при сооружении ВЛЭП, используемых конструкций, устройств, опор, материалов, параметров напряжения и других характеристик, обязанность согласования проектов ограничивают реализацию индивидуальных решений. Поэтому проектирование воздушных линий электропередач обычно стандартно, но допускает адаптацию типовых решений к фактическим условиям монтажа и эксплуатации ЛЭП.

Согласно стандартам напряжения выделяют воздушные ЛЭП:

  • трехфазного тока до 1000 В (1кВ);
  • трехфазного тока выше 1кВ.
  • постоянного тока.

На ЛЭП трехфазного тока подвешивается минимум 3 провода, составляющих одну цепь. На ЛЭП постоянного тока – не менее 2 проводов.

Проектом на основе предварительного обследования местности строительства ЛЭП, анализа климатических условий эксплуатации, требований технического задания определяются:

  1. Схема электроснабжения ЛЭП:
    • мощность, напряжение, резервирование;
  2. число цепей (одна, две или более);
  3. количество линий (одна, две, несколько параллельных) и опор.
  4. Тип, материалы и конструкция (марка) и количество проводов, грозозащитных тросов.
  5. Расчетные климатические условия эксплуатации ЛЭП – гололедные (гололедно-изморозевые), ветровые нагрузки, температурные уровни при заданных условиях и их влияние.
  6. Способ монтажа (подвески) – тип опор, крепление, натяжение.
  7. Расчетные параметры взаиморасположения проводов, заземленных частей опор, поверхности земли, наземных объектов. Основная цель – исключить электроразряды при перенапряжениях на ЛЭП заданного уровня напряжения.
  8. Длина пролета. Критические пролеты ЛЭП. Зависимость напряжения от различных условий (режимов) работы.
  9. Другие параметры и их значения в соответствии с Правилами устройства электроустановок (ПЭУ).

Монтаж ВЛ

В большинстве случаев, при сложном рельефе, целесообразным является монтаж ВЛ

«под тяжением». Современный метод позволяет существенно сократить трудозатраты, а также расходы на спецтехнику.

При выполнении монтажа «под тяжением» не требуется предварительно раскатывать провод либо кабель по земле. Натягиваемый провод не повреждается сколами, царапинами. Исключается возможность коронного разряда.

Использование программируемых машин по натяжению упрощает монтаж переходов линий через транспортные, железнодорожные пути, инженерные сооружения. Раскатка осуществляется специальными роликами непосредственно на опоры.

Повреждение натягиваемого провода практически невозможно. Специальные гидравлические машины отключаются при достижении нужного уровня тяжения.