Оглавление
- Направление электрического тока ⋆ diodov.net
- Движение электронов в металлах до появления электрического поля
- Физическая сущность течения тока в цепи
- Действия электрического тока
- Направление электрического тока
- Что такое ток, напряжение и сопротивление
- Проводимость металлов
- Направление электрического тока
- Направление линий магнитной индукции внутри постоянного магнита
- Скорость направленного движения зарядов
- Электрический ток и поток электронов
Направление электрического тока ⋆ diodov.net
Направление электрического тока принято считать от плюса к минусу генератора или источника питания, и принимается, что он протекает в металлических проводниках. Однако I образуется не только в проводниках, но и в газах и жидкостях.
Атомы металлов связаны в прочную кристаллическую решетку, поэтому свободно перемещаться могут только свободные электроны; ионы остаться неподвижными. Атомы газов и жидкостей могут свободно перемещаться, поскольку не имеют прочных связей.
Следовательно, носителями зарядов служат ионы и эл-ны.
Поэтому при определении силы тока I в газах и жидкостях, необходимо учитывать сумму положительных и отрицательных зарядов, прошедших через площадь поперечного сечения за единицу времени. Например, в металлическом проводнике I = 1 А, если через проводник за одну секунду проходят 6,2818 эл-нов (1 Кл).
Движение электронов в металлах до появления электрического поля
То есть, в металлах мы имеем дело с упорядоченной структурой атомов: каждый атом находится на своём конкретном месте.
Как мы уже знаем, вокруг ядра атомов движутся электроны.
Что же даёт возможность появления свободных электрических зарядов?
Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).
Рис. 3. Движение электронов внутри металлического проводника ()
Физическая сущность течения тока в цепи
Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц – электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).
Основными условиями возникновения и существования электрического тока являются:
- Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
- Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
- Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.
Действия электрического тока
Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.
1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.
3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.
Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.
Постоянный ток наиболее прост для изучения. С него мы и начинаем.
Направление электрического тока
Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..
- Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.
- Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.
- Измерение тока
- Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).
В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов. Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.
Для измерения силы тока существует измерительный прибор — амперметр.
Рис. 1
Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.
Направление электрического тока
Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»
Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны).
Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис.
2.
Рис. 2 Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.
Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.
Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».
Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее электричество, заряжается отрицательно. При их соединении избыточный положительный заряд перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).
Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.
После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Что такое ток, напряжение и сопротивление
Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах. Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.
Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира. Условиями возникновения и существования электрического тока являются:
- Наличие свободных носителей заряда
- Наличие электрического поля, создающего и поддерживающего ток.
Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно. Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.
Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.
Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ. Здесь:
- E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
- Δφ=φ1-φ2 – разность потенциалов (рисунок 1).
Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.
Электролиз в домашних условиях
Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε. Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.
Напряжение ( U )
Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε. Это не совсем корректно, но на практике вполне достаточно. Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривается на отдельной странице этого раздела.
Будет интересно Что такое короткое замыкание
Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.
Источники электрической энергии
Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S. Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление. Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:
- Ток – Ампер (А)
- Напряжение – Вольт (В)
- Сопротивление – Ом (Ом).
Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.
Проводимость металлов
Как уже отмечалось в прошлой главе, металлы являются самой распространенной средой, проводящей электрический ток. И носителями зарядов являются свободные электроны. В связи с этим существует особая терминология, в соответствии с которой проводимость металлов называется электронной проводимостью, а сами электроны металла – электронами проводимости. Этот факт ни в коей мере не постулировался, а был проверен и доказан независимо многими учеными разными методами. Например, немецкий физик Карл Рикке проводил опыт по пропусканию тока в 0,1 А в течении года через три отполированных цилиндра: одного алюминиевого и двух медных. По истечению эксперимента (а за это время по цепи прошел огромный заряд в ) никаких изменений в структуре цилиндров не произошло, за исключением небольшой диффузии (рис. 1). А если бы носителями заряда были не электроны, а ионы, то тогда был бы перенос вещества одного цилиндра в вещество другого, и, конечно же, в результате столь длительного эксперимента, химическое строение цилиндров изменилось бы.
Рис. 1. Схема опыта Рикке
Еще одним опытом по подтверждению электронной проводимости металлов стал опыт 1912 года российских ученых Мангельштама и Папалекси, спустя небольшое время проведенный также англичанами Стюартом и Толменом. В ходе этого опыта катушка с большим количеством витков быстро вращалась, а затем резко тормозилась. В результате чего замкнутый вместе с ней в цепь гальванометр показывал наличие небольшого тока (рис. 2).
Рис. 2. Схема опыта Мангельштама-Папалекси
Дело в том, что вместе с раскручиваемой катушкой вращаются, конечно же, и находящиеся в металле электроны. Когда же катушка тормозится, электроны некоторое время продолжают двигаться внутри катушки по инерции, производя таким образом ток.
Сверхпроводимость
Определение. Сверхпроводимость – явление, когда сопротивление проводника становится близким к нулю.
Открытию явления сверхпроводимости предшествовало получение в 1908 году голландцем Камерлингом Оннесом (рис. 4) жидкого гелия. Помещая образец проводника в жидкий гелий, стало возможным наблюдать поведение проводников при сверхнизких температурах (близко к 0 ). И в 1911 году Оннес установил, что ртуть при температуре около 4 К резко приобретает сопротивление, равное нулю.
Рис. 4. Камерлинг Оннес (Источник)
Его опытам с ртутью предшествовали опыты с платиной, в результате которых он установил, что чем чище вещество (чем меньше в нем примесей), тем быстрее уменьшается его сопротивление с уменьшением температуры. Благодаря жидкому состоянию ртути при нормальных условиях, этот металл очень легко было очистить от примесей. И была установлена следующая зависимость удельного сопротивления ртути от низких температур: линейное снижение прерывается скачком к нулю (рис. 5):
Рис. 5.
Явление сверхпроводимости объясняется с точки зрения квантовой физики.
Направление электрического тока
Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?
Направлением тока принято считать направление движения положительных зарядов.
Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1 ; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).
Рис. 1. Направление тока
Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.
Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.
Направление линий магнитной индукции внутри постоянного магнита
Исторически, во многих местах Земли давно замечено природное качество некоторых камней притягивать к себе железные изделия. Со временем, в древнем Китае, вырезанные определенным образом из кусков железной руды (магнитного железняка) стрелки превратились в компасы, показывающие направление к северному и южному полюсу Земли и позволяющие ориентироваться на местности.
Исследования этого природного явления определили, что более сильное магнитное свойство дольше сохраняется у сплавов железа. Более слабыми природными магнитами являются руды, содержащие никель или кобальт. В процессе изучения электричества, ученые научились получать искусственно намагниченные изделия из сплавов, содержащих железо, никель или кобальт. Для этого их вносили в магнитное поле, создаваемое постоянным электрическим током, а переменным током, если необходимо, размагничивали.
Изделия, намагниченные в природных условиях или полученные искусственно, имеют два различных полюса – места, где магнетизм наиболее сконцентрирован. Взаимодействуют магниты между собой посредством магнитного поля так, что одноименные полюса отталкиваются и разноименные притягиваются. Это образует вращающие моменты для их ориентации в пространстве более сильных полей, например, поля Земли.
Визуальное изображение взаимодействие слабо намагниченных элементов и сильного магнита дает классический опыт со стальными опилками, рассыпанными на картоне и плоским магнитом под ним. Особенно если опилки продолговатые, наглядно видно, как выстраиваются они вдоль силовых магнитных линий поля. Меняя положение магнита под картоном наблюдается изменение конфигурации их изображения. Применение компасов в этом опыте еще усиливает эффект понимания строения магнитного поля.
Одно из качеств силовых магнитных линий, открытых еще М. Фарадеем, говорит о том, что они замкнуты и непрерывны. Линии, выходящие из северного полюса постоянного магнита, входят в южный полюс. Однако внутри магнита они не размыкаются и входят из южного полюса в северный. Количество линий внутри изделия максимально, магнитное поле однородно, а индукция может слабеть при размагничивании.
Скорость направленного движения зарядов
Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.
Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.
Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.
Итак, подчеркнём ещё раз, что мы различаем две скорости.
1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.
2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.
Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.
Пусть проводник имеет площадь поперечного сечения (рис. 2)
Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т
е. их число в единице объёма) равна .
Рис. 2. К выводу формулы
Какой заряд пройдёт через поперечное сечение нашего проводника за время ?
С одной стороны, разумеется,
С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:
Следовательно, их общий заряд будет равен:
Приравнивая правые части формул (3) и (4) и сокращая на , получим:
Соответственно, плотность тока оказывается равна:
Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.
Заряд электрона известен: Кл.
Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:
Положим мм . Из формулы (5) получим:
Это порядка одной десятой миллиметра в секунду.
Электрический ток и поток электронов
Единица измерения силы тока
Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.
Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.
Ядро и электроны
Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.
У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.
Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).