Законы кирхгофа для расчёта электрических цепей

Правила Кирхгофа. Примеры

Определение 1

В узлах цепи с постоянным током не происходит накопление зарядов. Получаем первое правило (закон) Кирхгофа:

Алгебраическая сумма сил токов для каждого узла разветвленной цепи равняется нулю:

I1+I2+I3+…+In=.

Данное правило принято считать следствием закона сохранения электрического заряда.

Определение 2

Наличие разветвленной цепи позволяет выделить несколько замкнутых путей, которые состоят из однородных и неоднородных участков. Их принято называть контурами.

На участках с выделенным контуром могут протекать различные токи. Рисунок 1.10.2 наглядно показывает пример такой цепи, соответствующей 1 закону Кирхгофа. Она состоит из двух узлов a и d, в которых сходятся одинаковые токи. Только один из заданных узлов будет независимым.

Рисунок 1.10.2. Пример разветвленной электрической цепи. Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef).

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

В предложенной цепи выделяют три контура вида abcd, adefиabcdef. Независимыми считаются только два: abcd и adef. Последний из вышеперечисленных не имеет никаких новых участков.

Второе правило Кирхгофа – это следствие обобщенного закона Ома.

Для записи обобщенного закона Ома участков, составляющих один из контуров цепи, используется пример, изображенный на рисунке 1.10.2 для abcd. Каждому участку задаются положительные направления тока и обхода контура. Для записи следует учитывать «правила знаков», приведенные на рисунке 1.10.3.

Рисунок 1.10.3. «Правила знаков».

Запись обобщенного закона Ома для участков контура abcd принимает вид:

Для bc: I1R1=∆φbc-δ1.

Для da: I2R2=∆φda-δ2.

Сумма левых и правых частей равенств с условием ∆φbc=-∆φda преобразует выражение:

I1R1+I2R2=∆φbc+∆φda-δ1+δ2=-δ1-δ2.

Таким же образом можно записать для adef контура:

-I2R2+I3R3=δ2+δ3.

Определение 3

Формулировка 2 правила или закона Кирхгофа: алгебраическая сумма сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока этого участка равняется сумме ЭДС вдоль этого контура.

Первое и второе правила Кирхгофа

Первоначальной функцией законов Кирхгофа является расчет электрических цепей.

Для описания законов вводятся следующие понятия:

  1. Узел — точка, являющаяся местом соединения нескольких проводников гальванической цепи.
  2. Ветвь — участок схемы цепи, расположенный между 2 узлами. По ней протекает электрический ток с разными зарядами, но одинаковой силой.
  3. Контур — закрытый путь, пересекающий несколько ветвей и узлов разветвленной гальванической цепи.

Ветвь и узел способны быть как частями единого контура, так и отдельными элементами нескольких замкнутых путей.

Формулировка первого правила Кирхгофа для разветвленных цепей: в электрических схемах с последовательным соединением источника и приемника энергии суммарное количество токов, текущих по направлению к узлу, эквивалентно общему числу токов, текущих по направлению от узлов. Поток энергии, направленный к узлу, является положительным. Поток частиц, направленных от узла, является отрицательным.

При сложении 2 противоположно направленных токов с одинаковой величиной будет всегда получаться 0. Физический смысл первого закона заключается в том, что заряд не концентрируется в узлах гальванической схемы.

Для расчета силы постоянного тока используется следующая формула: I 1 =I 2 +I 3. При использовании первого правила для расчета переменного тока дополнительно применяются величины мгновенного напряжения. Формула записывается в комплексной форме с учетом активных и реактивных составляющих.

Второй закон Кирхгофа является следствием 3 уравнения Максвелла, доказывающего отсутствие магнитных зарядов в природе. Определение второго правила Кирхгофа: на резисторах закрытого контура гальванической цепи сумма напряжений эквивалентна общему числу ЭДС (электродвижущей силы), рассчитанной для замкнутого пути. Если в составе электрической схемы не присутствуют приборы, вырабатывающие ЭДС, то сумма напряжений будет равняться 0.

Электродвижущая сила равномерно распределяется на всех узлах электрической цепи. Отдельным случаем второго правила является закон Ома, описывающий соотношение ЭДС и силы тока в проводнике.

Второй закон применяется к переменному току.

В этом случае суммарное количество амплитуд ЭДС эквивалентно общей сумме падений напряжений на всех частях гальванической цепи.

При составлении линейных уравнений для второго закона необходимо правильно определить направление падения напряжений.

Для указания знака этой величины был разработан алгоритм:

  1. Отбирается направление обхода замкнутого пути. Падение способно двигаться по или против часовой стрелки.
  2. Выбирается направление движения потоков энергии, текущих через основные части электрической цепи.
  3. Если направление обхода контура совпадает с направлением ЭДС, то ставится положительный знак. Если направления не совпадают, то ставится отрицательный символ.

Особенности составления уравнений для расчёта токов и напряжений

В первую очередь выбирается участок, который необходимо исследовать. Затем на каждой ветке произвольно устанавливается стрелка показывающая направление движения тока. Это нужно для того, чтобы потом не ошибиться. При расчете неточность направления будет исправлена. Каждую стрелку обозначают буквой I с индексом. Удобнее будет рассматривать участок, если стрелки находятся в непосредственной близости от точки соединения цепей. Источники питания и резисторы тоже обозначают, а у общего резистора добавляют сопротивление.

Внутри участка также произвольно показывают направление обхода, ориентируясь на возможные потенциалы. Оно необходимо для сравнения направления движения тока. Это сравнение покажет, какой знак должен стоять у числа. Если оба направления совпадают, ставят знак + и знак – если направления противоположны.

Число поставленных задач должно соответствовать количеству выбранных неизвестных. Допустим, имеется три цепи и необходимо вычислить их токи, значит, составленных формул также должно быть три. Получается, что в новом уравнении должен быть хотя бы один новый элемент, которого нет в предыдущих задачах.

Формулировка правил

Сразу необходимо внести ясность. Хотя во многих технических текстах используется слово закон, на самом деле это правило. В чем различие? Закон основывается на фундаментальных истинах, фактах, правило несет более абстрактное понимание. Чтобы это лучше понять рассмотрим основы этого метода.

Из-за сложности вычислений его лучше использовать там, где схема имеет узлы и контуры. Узлом называется место соединения более двух цепей. Это как если взять три и более обычных нитки и связать их вместе. Контуром называется замкнутая цепь, включающая в себя три и более таких узла.

Отдельная ветвь может содержать сколько угодно резисторов, под которыми подразумеваются нагрузки с активным сопротивлением. Все они объединяются в один общий резистор, так как это упрощает решение задачи. Также в цепи может быть один или несколько источников питания, которые также объединяются в один элемент, либо их может и не быть. Тогда цепь будет состоять только из сопротивления.

Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, то в уравнении будет на одну букву больше, чем самих соединений. Например, участок состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. На самом деле, начинать отсчет можно с любой буквы петли, например, C, D, A, B, C, просто в первом варианте легче будет не запутаться.

Определения

Как уже было сказано ветвь – это отрезок электрической цепи, в которой направление движения заряда происходит в одну сторону. Сходящиеся в узле ветви имеют разное направление токов. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также относятся к этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящиеся к узлу и контуру. Самым главным и сложным является составление уравнений, учитывающих все составляющие этой формулы.

Первый закон

Первое правило говорит о сохранении заряда. Согласно ему, в узле напряжение должно быть равно нулю. Это возможно только в том случае, если все входящие токи в эту точку заходят через одни ветви, а выходят через другие. Соотношение входящих и выходящих токов может быть разным, но суммарная составляющая положительных и отрицательных потенциалов всегда одинакова.

Предположим, в узел входят токи по трем ветвям, а выходят по двум. Суммарная величина входящих токов будет точно равняться суммарной величине выходящих. Если отобразить это математически, то сумма положительных векторов I1, I2 и I3 будет равняться сумме отрицательных векторов I4 и I5.

Второй закон

Это правило связано с сохранением энергии в контуре. Другими словами, энергия источников э. д. с, входящих в контур или рассматриваемый участок, равна падению напряжения на сопротивлениях этого участка. Если выбранный участок не имеет источников питания, то суммарное падение напряжения на всех нагрузках будет равно нулю. Прежде чем переходить к расчетам, следует ознакомиться еще с некоторыми моментами.

§ 15. Второй закон Кирхгофа. Применение законов Кирхгофа для расчета электрических цепей

При расчете электрических цепей часто приходится встречаться с цепями, которые образуют замкнутые контуры. В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы.

На рис. 35 представлена часть сложной электрической цепи в виде замкнутого контура АБВГ. На схеме указаны полярность электродвижущих сил E1, E2, E3 и направления токов I1, I2, I3 и I4, протекающих на различных участках цепи.

Рис. 35. Участок сложной электрической цепи

Обходим контур от точки А в произвольном направлении, например по часовой стрелке. Рассмотрим каждый из участков рассматриваемого контура. На первом участке разность потенциалов между точками А и Б, или, что то же самое, напряжение U, равна э.д.с. Е1 минус падение напряжения I1r1. Аналогично будет и на других участках цепи:

на участке АБ φА - φБ = Е1 - I1r1; 
на участке БВ φБ - φВ = -Е2 - I2r2; 
на участке ВГ φВ - φГ = E3 - I3r3; 
на участке ГА φГ - φА = I4r4.

Складывая левые и правые части уравнения, получим:

φA — φБ + φБ — φВ + φВ — φГ + φГ — φА = E1 — I1r1 — E2 — I2r2 + E3 I3r3 + I4r4;
0 = E1 — I1r1 — E2 — I2r2 + E3 — I3r3 + I4r4.

Перенося произведения (I⋅r) в одну часть, а электродвижущие силы (Е) в другую часть, получим

-E1 + E2 — E3 = — I1r1 — I2r2 — I3r3 + I4r4.

Или в общем виде

ΣE = ∑I ⋅ r.

Это выражение представляет собой второй закон Кирхгофа. Формула показывает, что во всяком замкнутом контуре алгебраическая сумма электродвижущих сил равна алгебраической сумме падений напряжений.

По второму закону Кирхгофа,

∑E = ∑Ir.

Для простейшей замкнутой цепи с одной э.д.с. Е (рис. 36)

E = Ir + Ir = I(r + r),

откуда

I = E/r+r.

Рис. 36. Простой замкнутый контур

Мы получили формулу закона Ома для замкнутой цепи.

Следовательно, закон Ома является частным случаем 2-го закона Кирхгофа.

При расчете электрических цепей применяют различные методы расчета. Выбор того или иного метода зависит от конфигурации цепи, числа э.д.с., заданных величин.

Как правило, расчет неразветвленных цепей с любым числом э.д.с., а также расчет сложных цепей с одной э.д.с. легче производить, применяя закон Ома.

Расчет сложных цепей с несколькими э.д.с. производят с помощью уравнений 1-го и 2-го законов Кирхгофа.

Расчет сложной цепи методом законов Кирхгофа производят в следующем порядке:

Условно задаются направлениями токов в различных участках цепи.

Определяют число уравнений, которое необходимо составить для решения задачи. Если известны все э.д.с. и сопротивления цепи, число уравнений должно быть равно числу неизвестных токов.

Для составления уравнений вначале используют уравнения 1-го закона Кирхгофа. Число уравнений 1-го закона Кирхгофа на единицу меньше числа узловых точек в схеме. Остальное число уравнений составляют по 2-му закону Кирхгофа.

Для этого намечают контуры, направление обхода этих контуров и приступают к составлению уравнений. Если направление обхода не совпадает с направлениями э.д.с. или с направлениями токов на отдельных участках контура, то величины э.д.с. и падения напряжения I⋅r входят в уравнения со знаком минус.

Решая систему уравнений, находят величину токов,

Если окажется, что в результате решения уравнений некоторые из токов получились отрицательными, то это значит, что направление этих токов было выбрано неправильно. Надо изменить направление токов на схеме.

Проверка правильности решения производится путем подстановки полученных значений токов в одно из составленных уравнений.

Решим несколько задач, используя закон Ома и оба закона Кирхгофа.

Пример 30. Найти токи в цепи, представленной на рис. 37. Выберем произвольно положительное направление тока. Обходя контур по часовой стрелке, пишем уравнение второго закона Кирхгофа:

-E1 + E2 = Ir1 + Ir2;
-1,9 + 1,3 = I(2 + 3);
-0,6 = 5I, I = -0,12 а.

Рис. 37. Электрическая цепь (к примеру 30)

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Пример 31. Дана электрическая цепь (рис. 38). Определить токи на отдельных участках.

Рис. 38. Электрическая цепь (к примеру 31)

Произвольно выбираем положительные направления токов.

Для контура абде

6 = 2I1 + 5I3. (1)

Для контура авге

6 — 2 = 2I1 — 4I2. (2)

Для точки б, по первому закону Кирхгофа,

I3 = I1 + I2. (3)

Имеем три уравнения с тремя неизвестными. Решая их, находим величину и направление токов. Подставляя значение тока I3 из уравнения (3) в уравнение (1), получим

 6 = 2I1 + 5I1 + 5I2;
 6 = 7I1 + 5I2 
+
 2 = I1 - 2I2

или

 12 = 14I1 + 10I2 
+ 
 10 = 5I1 + 10I2.

Складывая два последних уравнения, имеем:

22 = 19I1, откуда I1 = 1,156 а,

подставляем значение I1 в уравнение (1):

6 = 2 ⋅ 1,156 + 5I3,

I3 = 6 — 2 ⋅ 1,156 = 0,74 а.
5

Подставляем значение I1 в уравнение (2):

2 = 1,156 — 2I2,

откуда

I2 = — 2 + 1,156 = — 0,422 a.
2

Знак минус показывает, что действительное направление тока I2 обратно принятому нами направлению.

Законы Кирхгофа для магнитной цепи

В электротехнике также важны и расчёты магнитных цепей, оба закона нашли своё применение и здесь. Суть остаётся той же, но вид и величины изменяются, давайте рассмотрим этот вопрос подробнее. Сначала нужно разобраться с понятиями.

Магнитодвижущая сила (МДС) определяется произведением количества витков катушки, на ток через неё:

F=w*I

Магнитное напряжение – это произведение напряженности магнитного поля на ток, через участок, измеряется в Амперах:

Um=H*I

Или магнитный поток через магнитное сопротивление:

Um=Ф*Rm

L – средняя длина участка, μr и μ – относительная и абсолютная магнитная проницаемость.

Проводя аналогии запишем первый закон Кирхгофа для магнитной цепи:

То есть сумма всех магнитных потоков через узел равна нулю. Вы заметили, что звучит почти так же, как и для электрической цепи?

Тогда второй закон Кирхгофа звучит, как «Сумма МДС в магнитном контуре равна сумме UM­­ ­­(магнитных напряжений).

Магнитный поток равен:

Для переменного магнитного поля:

Он зависит только от напряжения на обмотке, но не от параметров магнитной цепи.

В качестве примера рассмотрим такой контур:

Тогда для ABCD получится такая формула:

Для контуров с воздушным зазором выполняются следующие соотношения:

Сопротивление магнитопровода:

А сопротивление воздушного зазора (справа на сердечнике):

Где S — это площадь сердечника.

Чтобы полностью усвоить материал и наглядно просмотреть некоторые нюансы использования правил, рекомендуем ознакомиться с лекциями, которые предоставлены на видео:

https://youtube.com/watch?v=LzqkLKOyid8

Суть первого закона Киргофа

Для русскоязычного населения одно название «первый закон Кирхгофа» вызывает некую психологическую встревоженность из-за сложного звучания, но это всего лишь психо-эмоциональная реакция. Стоит заметить, что первый из двух выдающихся законов более простой для восприятия и понятный, нежели второй. Чтобы разобраться в этом вопросе, стоит начинать сначала. Сам принцип понимания 1 закона Кирхгофа заключается в последовательной цепочке:

Для начала давайте определимся, что в основе открытия лежит узел цепи, который является центром соединения нескольких фрагментов. К примеру, это может быть клемма, зафиксированная на аккумуляторе, от которой в автомобиле работает магнитофон, сигнал, фары и подфарники и т. д. А может это корпус, в котором зажимается обычная пальчиковая батарейка в будильнике, от которой двигаются стрелки и периодично срабатывает звуковой сигнал. Далее согласно первому закону Кирхгофа стоит понять, что все узлы любой из запитанных к одному центру цепей всегда равномерно приравниваются к значению «0»

То есть неважно, сколько тока входит в одну из цепей одной совокупности узлов — их количество всё равно равномерно распределяется по всему комплексу

Значение в математике

Имеется контур, состоящий из четырех цепей. В первой содержится источник питания ε1 с внутренним сопротивлением источника r1, во второй какая-то нагрузка R1. Третья имеет источник питания и нагрузку. Четвертая состоит из нагрузки. Точки B и F являются узлами. Стрелки возле них показывают предположительное направление тока. Стрелка внутри участка показывает направление обхода. Необходимо найти ток в цепях: AK, AB, BF, CD. По идее нужно составить четыре уравнения, но поскольку ε1 и R1 единственные на участке KAB, то их объединим в одну цепь. Выходит, нужно составить три уравнения.

Первое берется из первого правила: I1 + I2 + I3 = 0. Поскольку I1, I2 втекают в узел B, они имеют положительный знак, а I3 вытекает из него, то имеет отрицательный знак. Подставляем в уравнение и получаем I1 + I2 – I3 = 0, или в таком виде I1 + I2 = I3. Второе и третье уравнение берем из второго правила. Для этого используем контур BCDFB и преобразуем формулировку в математическое решение: ε2 = I2 × R2 + I3 × R3. Для участка ACDKA получаем соответственно ε1 = I1 × R1 + I3 × R3. Для наглядности вынесем их отдельно.

I1 + I2 = I3

ε1 = I1 × R1 + I3 × R3

ε2 = I2 × R2 + I3 × R3

Получилось три задачи. Определимся с номиналами. Первый источник питания равен 6 В, второй – 12 В

Хотя так поступать нельзя, потому что параллельные источники питания должны быть одинаковыми, но нам это пригодится для получения важного урока. Первое сопротивление равно 2 Ом, второе – 4 Ом, третье – 8 Ом

Осталось вставить данные в уравнения и получаем: для второго номера 6 = 2I1 + 8I3, для третьего номера 12 = 4I2 + 8I3. Дальше избавляемся от общего неизвестного I3. Согласно первому пункту, он равен I1 + I2. Подставляем вместо него эту сумму и получаем: 6 = 2I1 + 8(I1 + I2), 12 = 4I2 + 8(I1 + I2). Раскрываем скобки и складываем одинаковые неизвестные: 6 = 10I1 + 8I2; 12 = 12I2 + 8I1. Чтобы найти I1, нужно избавиться от I2. Для этого первое уравнение умножаем на 12, а второе на 8 и получаем: 72 = 120I1 + 96I2; 96 = 96I2 + 64I1. От первого отнимаем второе и записываем остаток -24 = 56I1, или I1 = -24/56 = -6/14 А. Почему ток отрицательный?

Потому что источники питания разные. На втором источнике напряжение выше, чем на первом, поэтому ток идет в обратном направлении. Находим I2, для этого значение I1 вставляем в любое из последних уравнений: 96 = 96I2 – 64 24/56. Разделим левую и правую часть на 96 и получим: 1 = I2 – (64×24)/(96×56) или дробную часть переносим влево, меняя знак. I2 = 1(64×24)/(96×56), после всех сокращений получаем 1 4/14 А. Для нахождения I3 воспользуемся первым номером: I3 = I1 + I2. I3 = -24/56 + 1 4/14 = 1(4×56)/(14×56) – (24×14)/(56×14) = 1 224/784 -336/784 = 1008/784 -336/784 = 672/774 ≈ 0,87А. Получили I1 = -6/14 А, I2 = 1 4/14 А, I3 ≈ 0,87А.

Просвет в науке об электричестве

Спустя почти два века после Ньютона на отдаленном оазисе нынешнего российского государства в Кёнигсберге, нынче в Калининграде появился на свет будущий не похожий ни на кого и выдающийся человек — Густав Кирхгоф. Молодой человек в школьные годы и первые курсы университета физико-математического факультета увлекался больше математическими расчетами и равнодушно выполнял задачи по наблюдению и учету каких-либо физических реакций, процессов. Но на двадцать первом году своей жизни проявил первый интерес к прохождению электрического тока.

В регулярном общении с Нейманом, далее с Бунзеном и многим другими выдающимися учёными молодой Густав развивал свой интерес и достигал все новых и новых открытий. Так образовались понятия, такие как закон и правило Кирхгофа.

Применение

Рекомендуем:

  • Частотный преобразователь для однофазного электродвигателя
  • Электродвигатели асинхронные трехфазные, их достоинства, технические характеристики, виды, особенности
  • Сила тока в цепи: как ее определить?

Формула Первого закона такова:

Для схемы, приведенной ниже, справедливо:

I1 — I2 + I3 — I4 + I5 = 0

Плюсовые — это токи, идущие к точке, а те, что выходят из нее «-».

Записывается это так:

  • k — количество ЭДС источников;
  • m – ветви замкнутого контура;
  • Ii,Ri – их сопротивление i-й и ток.

В данной схеме: Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4.

  • ЭДС принимается «+» при совпадении ее направления с выбранным направлением обхода.
  • При совпадении направления тока и обхода на резисторе, с плюсом будет также напряжение.

Демонстрация закона напряжений Кирхгофа в последовательной цепи

Давайте еще раз посмотрим на наш пример последовательной схемы, на этот раз нумеруя точки цепи для обозначения напряжений:

Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, вольтметр зарегистрировал бы значение +45 вольт. Для положительных показаний на дисплеях цифровых счетчиков знак «+» обычно не отображается, а скорее подразумевается. Однако для этого урока полярность показаний напряжений очень важна, поэтому я буду явно показывать положительные числа:

E2-1 = +45 В

Когда напряжение указывается с двойным нижним индексом (символы «2-1» в обозначении «E2-1»), это означает напряжение в первой точке (2), измеренное по отношению ко второй точке (1). Напряжение, указанное как «Ecd», будет означать значение напряжения, показанное цифровым мультиметром с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно точки «d».

Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего мультиметра на точке впереди и черным измерительным проводом на точке позади, мы получили бы следующие показания:

E3-2 = -10 В

E4-3 = -20 В

E1-4 = -15 В

Нам уже должен быть знаком общий для последовательных цепей принцип, утверждающий, что отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и уделение внимания полярности (математическому знаку) показаний открывает еще один аспект этого принципа: все измеренные напряжения в сумме равны нулю:

В приведенном выше примере контур образован следующими точками в следующем порядке: 1-2-3-4-1. Не имеет значения, с какой точки мы начинаем или в каком направлении движемся при следовании по контуру; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем той же цепи подсчитать напряжения в контуре 3-2-1-4-3:

Этот пример может быть более понятен, если мы перерисуем нашу последовательную схему так, чтобы все компоненты были представлены на одной прямой линии:

Это всё та же последовательная схема, только с немного перераспределенными компонентами

Обратите внимание на полярность падений напряжения на резисторах по отношению к напряжению батареи: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторах ориентированы в другую сторону (положительное слева и отрицательное справа). Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей

Другими словами, «толкание», прилагаемое резисторами против потока электрического заряда, должно происходить в направлении, противоположном источнику электродвижущей силы.

Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, если черный провод будет слева, а красный провод – справа:

Если бы мы взяли тот же вольтметр и измерили напряжение между комбинациями компонентов, начиная с единственного R1 слева и продвигаясь по всей цепочке компонентов, мы увидели бы, как напряжения складываются алгебраически (до нуля):

Тот факт, что последовательные напряжения складываются, не должен быть тайной, но мы заметили, что полярность этих напряжений имеет большое значение в том, как эти значения складываются. При измерении напряжения на R1 – R2 и R1 – R2 – R3 (я использую символ «двойное тире» «–» для обозначения последовательного соединения между резисторами R1, R2 и R3), мы видим, как измеряются бо́льшие значения напряжений (хотя и отрицательные), потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (плюс слева, минус справа).

Сумма падений напряжения на R1, R2 и R3 равна 45 вольт, что соответствует выходному напряжению батареи, за исключением того, что полярность напряжения батареи (минус слева, плюс справа) противоположна падениям напряжения на резисторах, поэтому при измерении напряжения на всей цепочке компонентов мы получаем 0 вольт.

То, что мы должны получить ровно 0 вольт на всей линии, тоже не должно быть тайной. Глядя на схему, мы видим, что крайняя левая часть линии (левая сторона R1, точка номер 2) напрямую соединена с крайней правой частью линии (правая сторона батареи, точка номер 2), что необходимо для завершения схемы.

Поскольку эти две точки соединены напрямую, они являются электрически общими друг с другом. Таким образом, напряжение между этими двумя электрически общими точками должно быть равно нулю.