Обзор эффективных способов и видов заземления нейтрали

ВВЕДЕНИЕ

Режим нейтрали распределительных электрических сетей напряжением 6—20 кВ (РЭС) в течение многих лет был и остался предметом многочисленных публикаций и дискуссий .

Особенностью РЭС, включая городские электрические сети, является наличие у применяемого в них оборудования достаточно большого запаса электрической прочности фазной изоляции (относительно земли), допускающего работу с увеличенным фазным напряжением до номинального линейного. По этой причине нормативные материалы предписывают использовать режим изолированной нейтрали (I-режим) для таких сетей в качестве основного. Данный режим получил исключительно широкое распространение, так как может допускать работу сети с однофазным замыканием на землю (ОЗЗ) в течение времени, достаточного для поиска повреждённого участка, подачи резервного питания на электроприёмники или их отключения вручную.

В сетях с большой ёмкостью фаз в соответствии с осуществляется компенсация тока ОЗЗ с помощью дугогасящих реакторов, имеющих в ряде случаев автоматическую резонансную настройку на ёмкость сети. Данный режим наряду с режимом изолированной нейтрали в нашей стране является основным.

Анализ опыта эксплуатации сетей с изолированной нейтралью и компенсацией ёмкостных токов замыкания на землю, проведённый многими авторами, показывает, что удельная повреждаемость элементов РЭС достаточно велика. Это объясняет причину поиска новых режимов нейтрали РЭС, включая работу сети с изменяемым при ОЗЗ режимом нейтрали.

Наибольшее распространение во многих странах получили новые режимы работы сети: с высокоомным (RB-режим) и низкоомным (RН-режим) рези-стивными заземлениями нейтрали, снижающими перенапряжения при ОЗЗ. При этом заземление принято считать высокоомным, если ток в элементе, заземляющем нейтраль, при ОЗЗ близок по модулю к ёмкостному току замыкания на землю, а низкоомным — если ток в указанном элементе в тех же условиях достаточен для срабатывания простейших токовых защит от ОЗЗ. Следует отметить, что заземление нейтрали с помощью дугогасящего реактора по аналогии с резистивным заземлением можно назвать высокоомным индуктивным заземлением (LB-режим).

Наряду с этим в некоторых странах используется режим комбинированного (LB — RB-режим), а также низкоомного индуктивного (LH-режим) и эффективного заземления нейтрали (G-режим). Следует отметить, что низкоомные резистивное и индуктивное заземления нейтрали, как правило, являются кратковременными режимами, в которые сеть переходит либо на время отключения ОЗЗ, либо на время селективного определения места повреждения, в то время как высокоомные заземления, включая LB — RB-режим, являются длительными, в которых сеть может работать постоянно.

Технические решения по резистивному заземлению нейтрали не всегда обеспечивают повышение эффективности функционирования кабельной сети. В частности, при высокоомном резистивном заземлении нейтрали (RB-режим), как отмечено в , повторные пробои изоляции возникают более часто, чем в LB-режиме. Использование режима низкоомного резистивного заземления нейтрали (RH-режим) связано с дополнительными капиталовложениями в средства релейной защиты, т.к. необходима установка специальных чувствительных защит от замыканий на землю. Кроме того, после отключения замыкания на землю затруднён быстрый поиск места повреждения, так как промышленные указатели тока короткого замыкания не реагируют на токи ОЗЗ при низкоомном резистивном заземлении нейтрали.

Повышенные перенапряжения при ОЗЗ могут быть снижены не только путём применения специального режима нейтрали, но и с помощью быстродействующего автоматического шунтирования (заземления) повреждённой фазы (АЗФ), однако в настоящее время в РФ этот вид автоматики практически не применяется. Одной из причин этого является несовместимость АЗФ с изолированной нейтралью и с компенсацией ёмкостных токов при ОЗЗ, обоснованная в .

В научно-технической литературе приведены различные варианты режимов нейтрали с анализом их достоинств и недостатков, однако появившиеся в последние годы публикации, посвящённые данной проблеме, объясняют необходимость дополнительного рассмотрения вопроса низкоомного заземления нейтрали, что является целью этой статьи.

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Компенсация емкостных токов

При превышении емкостными токами замыкания на землю величин, указанных в таблице, сеть должна быть снабжена установками компенсации.

Установка компенсации емкостных токов состоит из двух элементов. Первый из них – трансформатор, задача которого – выделить из трехфазной сети потенциал нейтрали. Это почти обычный силовой трансформатор, у которого первичная обмотка соединена в звезду с нулевым выводом. Нейтраль звезды соединяется с землей через дугогасящую катушку.

Второе ее название – катушка Петерсона. Она бывает также похожа на силовой трансформатор с маслонаполненным баком, а иногда имеет и другую конструкцию. Но основная ее особенность в том, что ее индуктивность регулируется, плавно или ступенчато.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

При отсутствии замыкания ток через катушку минимален. Предварительно ее настраивают в резонанс с общей емкостью сети. На устройствах со ступенчатой регулировкой это выполняется довольно приближенно и грубо. Если суммарное емкостное сопротивление сети больше, чем индуктивное сопротивление катушки, этот режим работы называется недокомпенсацией. Если ситуация противоположная – перекомпенсацией. Режим с перекомпенсацией для электроустановок является предпочтительным.

Но емкостное сопротивление сети постоянно изменяется в зависимости от подключенных к ней кабельных линий. В результате режим установки компенсации требует постоянной корректировки. Наиболее эффективным является применением плавной регулировки индуктивности катушки Петерсона. Он производится за счет изменения зазора в ее магнитопроводе с помощью специального электропривода. За этим следит автоматика.

Помимо основного электрооборудования в состав установки компенсации емкостных токов, входят и вспомогательные элементы. Это трансформатор тока, служащий для измерения тока замыкания на землю, специальная обмотка для выделения 3Uo.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Виды систем заземления

Основным способом защиты от поражения электрическим током является применение одной из систем заземления. В главе 1.7 ПУЭ перечисляются пять типов таких устройств:

Любая из этих систем надёжно защищает людей в условиях городской квартиры или частного дома, но имеет свои конструктивные и защитные отличия.

Применение конкретного вида защиты в особых условиях регламентируется ПУЭ и связано с особенностями помещений и электроустановок.

Информация! Установка заземления обязательна во всех новых зданиях и желательна при ремонте старых сооружений.

Выбор системы заземления производится на стадии проектирования здания и электропроводки до начала монтажных работ.

Конструкция контура

Составные части

Уже упоминавшееся ранее сопротивление заземления (Rз) контура – основной параметр, контролируемый на всех этапах его эксплуатации и определяющий эффективность его применения. Эта величина должна быть настолько малой, чтобы обеспечить свободный путь аварийному току, стремящемуся стечь в землю.

Обратите внимание! Важнейшим фактором, оказывающим решающее влияние на величину сопротивления заземления, является качество и состояние грунта в месте обустройства ЗУ. Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:. Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

  • В её составе необходимо предусмотреть набор металлических прутьев или штырей длиной не менее 2-х метров и диаметром от 10-ти до 25-ти миллиметров;
  • Они соединяются между собой (обязательно на сварку) пластинами из того же металла в конструкцию определённой формы, образуя так называемый «заземлитель»;
  • Кроме того, в комплект устройства входит подводящая медная шина (её ещё называют электротехнической) с сечением, определяемым типом защищаемого оборудования и величиной токов стекания (смотрите таблицу на рисунке ниже).

Таблица сечений шин

Эти составляющие устройства  необходимы для соединения элементов защищаемого оборудования со спуском (медной шиной).

Различие по месту устройства

Согласно положениям ПУЭ, защитный контур может иметь как наружное, так и внутреннее исполнение, причём к каждому из них предъявляются особые требования. Последними устанавливается не только допустимое сопротивление контура заземления, но и оговариваются условия измерения этого параметра в каждом частном случае (снаружи и внутри объекта).

При разделении систем заземления по их местонахождению следует помнить о том, что лишь для наружных конструкций корректен вопрос о том, как нормируется сопротивление заземлителя, поскольку внутри помещения он обычно отсутствует. Для внутренних конструкций характерна разводка по всему периметру помещений электротехнических шин, к которым посредством гибких медных проводников подсоединяются заземляемые части оборудования и приборов.

Для элементов конструкций, заземлённых снаружи объекта, вводится понятие сопротивления повторного заземления, появившееся вследствие особенной организации защиты на подстанции. Дело в том, что при формировании нулевого защитного или совмещённого с ним рабочего проводника на питающей станции нейтральная точка оборудования (понижающего трансформатора, в частности) уже заземляется один раз.

Поэтому когда на ответном конце того же провода (обычно это PEN или PE шина, выводимая непосредственно на щиток потребителя) делается ещё одно местное заземление, его с полным основанием можно назвать повторным. Организация этого вида защиты показана на рисунке ниже.

Повторное заземление

Важно! Наличие местного или повторного заземления позволяет подстраховаться на случай повреждения защитного нулевого провода PEN (PE – в системе электропитания TN-C-S). Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля». Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля»

Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля».

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Устройство и принцип действия сетей с глухозаземлённой нейтралью

Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.

Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.

Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напржение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.

Но основная задача такой системы это не только транспортировка к потребителю двух систем электроснабжения с разными номиналами и разными количеством фаз, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:

  • корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
  • металлоконструкции щитовых и распределительных устройств;
  • защитная оболочка кабелей.

Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Вам это будет интересно Особенности обозначение фазы и нуля

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Способы подсоединения

Особенность функционирования высоковольтных систем заключается в том, что при повреждении, обрыве линии происходит замыкание на землю отдельного провода. При этом токи утечки представлены внушительными величинами. Отличительными являются меры безопасности, которые применяются к подобным сетям. Они несравнимы с аналогичными действиями, проводимыми в цепях конечных потребителей. В сетях с 6 — 35 кВ стандартно задействуются следующие виды заземления нейтрали:

  1. Прямая связь с заземляющим устройством (ЗУ), которое устанавливается вблизи высоковольтной опоры, подстанции с трансформатором. Такую схему принято называть глухозаземленной нейтралью.
  2. Подключение выполняется с помощью специальных устройств — компенсаторов или реакторов дугогасящего типа.
  3. В процессе задействуется заземляющая система, предполагающая подключение описываемой нейтральной точки посредством резистора.
  4. Создание изолированной нейтрали в обход к подсоединению ЗУ в пределах обслуживаемого объекта, защищаемой высоковольтной линии.

Когда достигаются определенные показатели индуктивности, ток в месте замыкания используемого заземлителя достигает нулевых значений. Более эффективное действие подобного заземления с параллельной индукцией обеспечивается за счет включения резистора. Такой прибор обеспечивает стекание активного тока, который необходим для работы высоковольтного защитного реле.

Без подключения в цепь обозначенных устройств невозможно создание эффективных защитных функций. Если случится случайная поломка нейтрального проводника, на подстанциях силовые действующие установки будут незащищенными.

Вам это будет интересно Создание штробореза для газобетона своими руками

Стоит упомянуть еще вариант заземления нейтрали, включенной в сети от 6 до 35 кВ. Общая точка подводится к питающей цепи, что дает возможность эффективно использовать заземлитель. При этом создаются оптимальные условия для стекания активного тока. Существенным недостатком метода выступает его высокая стоимость, по этой причине он задействуется только на территориях питающих подстанций, у которых входные напряжения достигают 110 кВ и более.

Отличия зануления от заземления

Способы заземления и зануления обладают разным защитным действием. Зануление обеспечивает мгновенное срабатывание автоматических выключателей при замыкании фазы на корпус. При этом происходит обесточивание подключенных потребителей электроэнергии, например, станков, трансформаторов.

Но это не спасает человека от воздействия тока утечки, а также при обрыве нулевого проводника на корпусах электрооборудования появится напряжение. В связи, с чем зануление в чистом виде не используется.

При этом в электрооборудовании с четырехпроводной сетью с глухозаземленной нейтралью и нулевым проводом напряжением до 1000В зануление является основным средством защиты.

Реализация схем зануления и заземления имеет ряд отличий. Одно из основных – для заземления необходимо использовать кабели с отдельной жилой. Сечение PE-проводников может быть меньше сечения фазовых, а их изоляция всегда имеет желто-зеленый цвет.

Одно из основных преимуществ при реализации зануления – применение более дешевого кабеля. Преимущества заземления — оно работает всегда, не требует частого контроля качества соединения, достаточно раза в год.

Соединение нуля с «землёй» (зануление) в частном доме или квартире не только не обязательно, но и может быть небезопасным. Если нулевой провод отгорит или оборвется в этажном щите, то на бытовые устройства, работающие от 220 В, поступит напряжение гораздо большой величины, что приведет к выходу их из строя, к тому же на их корпусах появится опасное напряжение.

Под «землёй» здесь имеется в виду проводник, подключенный к корпусам электроприборов и заземляющим контактам розеток.

Для обеспечения наибольшей безопасности, можно рекомендовать устройство зануления и заземления одновременно. Для этого реализуется система TN-C-S — заземление и разделение нуля на вводе в дом, во вводном общедомовом электрощите ВРУ.

Как сделать заземление в розетке и проверить заземление розеток?

Для безопасности эксплуатации бытовой техники в доме или в квартире (холодильника,бойлера,стиральной машины,утюга)и защиты человека от поражения электрическим током, необходимо чтобы розетки были с заземлением. В квартирах и домах новой постройки заводят кабельные линии которые связаны через электрощит с контуром заземления согласно требований Правил устройства электроустановок (ПУЭ). В домах и квартирах старой постройки контур заземления как правило отсутствует.Как проверить наличие заземлена ли розетка?Давайте начнем.

Для того чтобы проверить есть ли заземление в розетках необходимо взглянуть на розетку.На розетке с заземлением должны быть заземляющие контакты которые через вилку при включении-заземляют электроприбор.Розетки которые без заземления не имеют заземляющих контактов.

Наличие в розетке заземляющих контактов не гарантирует наличие заземления.Далее необходимо открыть розетку с тыльной стороны и посмотреть сколько проводов подходит к розетке.Если к розетке подведен двухжильный провод то это означает что на 99.9% в розетках заземление отсутствует.В случае если к розетке подключен трехжильный кабель,необходимо проверить есть ли заземление в розетке.Для проверки заземляющего провода можно использовать тестер с помощью которого проверяется связь между заземляющими контактами в розетке и электрическим щитком в котором выполнено защитное заземление или защитное зануление (выполняется при отсутствии шины заземления в электрощите).

Если Вам необходимо сделать заземление в розетках в квартире или в доме в котором электропроводка выполнена двухжильными проводами,то без замены всей электропроводки к сожалению в таком случае не обойтись.Теоретически к каждой розетке можно подвести провод который соединен с шиной заземления,но выглядеть такая проводка как минимум не эстетично.

Категорически запрещается соединять заземляющий контакт с нулевым проводом непосредственно в розетке.Это опасно для жизни человека в случае обрыва нулевого провода.При обрыве нулевого провода на заземляющем контакте розетки появляется опасное напряжение.Это можно увидеть на рисунке ниже.

Если Вам необходимо сделать контур заземления в доме,Вы можете сделать монтаж контура заземления своими руками или силами наших специалистов.

Заказать модульное заземление Вы можете через онлайн форму или по телефонам указанным на нашем сайте www.energomag.net (095)235-49-95,(096)262-98-48,,(044)362-92-50

Доставка комплектов заземления в любую точку Украины Новой почтой по предоплате или наложенным платежом.

Если Вы сомневаетесь в выборе или не знаете как выбрать комплект заземления,мы будем рады Вам помочь.

Достоинства и недостатки

Для планирования подключений, расхода материалов во время строительства, проектирования, затрат на обслуживание в процессе эксплуатации обязательно учитываются все за и против.

Изолированная от земли нулевая точка обладает такими преимуществами в эксплуатации:

  • Обеспечивает больший уровень безопасности системы, чем когда нейтраль заземлена, так как при однофазных кз отсутствует цепь для протекания электрического тока.
  • Высокая степень надежности – благодаря уменьшению числа действующих элементов, существенно понижается вероятность возможных повреждений во время работы, снижается количество возможных аварий и поломок.
  • Требует меньших затрат на этапе монтажа линий электропередач для изолированного нулевого вывода. Так как электрическая энергия передается лишь по трем проводам, это позволяет существенно снизить себестоимость ЛЭП.
  • Независимость питания для однофазных нагрузок – даже в случае обрыва одной из фаз, электроснабжение по другим продолжится в штатном режиме.

Рис. 4. При обрыве одной фазы остальные обеспечивают питание Отсутствуют перекосы и нарастание токовой нагрузки.

Но, несмотря на существенные превосходства над методом электроснабжения с заземленной нейтралью, такой вариант имеет и ряд недостатков.

Среди которых наиболее важными являются:

  • Представляет опасность для человека и трехфазных нагрузок при однофазных обрывах и замыканиях в высоковольтных сетях.
  • Слишком малые величины токов замыкания, чем когда используется глухозаземленная нейтраль, что существенно усложняет своевременное выявление и локализацию повреждения.
  • Отсутствует визуальный эффект при замыкании – так как нет контакта с нейтралью источника момент касания токоведущих частей и земли не приводит к образованию искр или дуги.
  • Изоляция всего оборудования должна рассчитываться на значение межфазного напряжения, а из-за отсутствия нулевого защитного проводника фазного, как такового вообще нет.
  • Снижается срок службы изоляции между фазами – особенно актуально для кабельно-проводниковой продукции, подсоединяемой к трехфазным обмоткам. При этом характер и место повреждения в кабеле всегда носит случайный характер, предусмотреть наиболее подверженные места попросту невозможно.

Как видите из вышеперечисленного, система с незаземленной нейтралью имеет значительно больше недостатков, чем преимуществ. Из-за чего ее постоянно вытесняет тип питания с заземлением нейтрали, но до сих пор существует ряд отраслей, где недостаток изолированной нулевой точки сведен к минимуму.

Механизм действия

В соответствии с Правилами этим термином называют электрическое соединение нейтрали генератора (трансформатора) с устройством заземления. К примеру, трехпроводная сеть прокладывается от источника питания в жилой дом. Нейтраль через шкаф ввода распределяется по щиткам. К ней подключаются контуры заземления потребителей. В этих цепях недопустим монтаж плавких предохранителей, иного устройства, способного нарушить целостность цепи.

Рабочий ноль – это другой проводник. Между ним и третьим проводом возникает напряжение фазы, которое используется стиральными машинами, микроволновыми печами и другим оборудованием.

Пример аварийной ситуации. Под воздействием вибрации внутри техники отсоединился от штатного места крепления фазный провод, произошло его прикосновение к металлическому корпусу. Возникнет короткое замыкание, резко возрастет сила тока. Автоматический выключатель или плавкая вставка выполнит свою функцию, питание будет отключено.

Сопротивление R0 будет меньше, чем по пути прохождения тока через тело человека, случайно дотронувшегося до фазного провода, что исключает поражение током (рис. ниже). На этой схеме представлен вариант заземления нейтрали генератора.

Схема глухозаземленной нейтрали

Чтобы такая схема сработала быстро и эффективно, необходимо соблюдать положения норм Правил. В соответствии с ними должна создаваться качественная защищенная сеть.

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.